{"id":710251,"date":"2020-12-04T20:21:29","date_gmt":"2020-12-05T04:21:29","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=710251"},"modified":"2020-12-04T20:21:29","modified_gmt":"2020-12-05T04:21:29","slug":"secure-medical-image-analysis-with-cryptflow","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/secure-medical-image-analysis-with-cryptflow\/","title":{"rendered":"Secure Medical Image Analysis with CrypTFlow"},"content":{"rendered":"

We present CRYPTFLOW, a system that converts TensorFlow inference code into Secure Multi-party Computation (MPC) protocols at the push of a button. To do this, we build two components. Our first component is an end-to-end compiler from TensorFlow to a variety of MPC protocols. The second component is an improved semi-honest 3-party protocol that provides significant speedups for inference. We empirically demonstrate the power of our system by showing the secure inference of
\nreal-world neural networks such as DENSENET121 for detection of lung diseases from chest X-ray images and 3D-UNet for segmentation in radiotherapy planning using CT images. In particular, this paper provides the first evaluation of secure segmentation of 3D images, a task that requires much more powerful models than classification and is the largest secure inference task run till date.<\/p>\n","protected":false},"excerpt":{"rendered":"

We present CRYPTFLOW, a system that converts TensorFlow inference code into Secure Multi-party Computation (MPC) protocols at the push of a button. To do this, we build two components. Our first component is an end-to-end compiler from TensorFlow to a variety of MPC protocols. The second component is an improved semi-honest 3-party protocol that provides […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13553,13560,13558],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-710251","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-medical-health-genomics","msr-research-area-programming-languages-software-engineering","msr-research-area-security-privacy-cryptography","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-12-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2020\/12\/ppml20_camera.pdf","id":"710254","title":"ppml20_camera","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":710254,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2020\/12\/ppml20_camera.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Javier Alvarez-Valle","user_id":32137,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Javier Alvarez-Valle"},{"type":"user_nicename","value":"Pratik Bhatu","user_id":38913,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Pratik Bhatu"},{"type":"user_nicename","value":"Nishanth Chandran","user_id":33084,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Nishanth Chandran"},{"type":"user_nicename","value":"Divya Gupta","user_id":37766,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Divya Gupta"},{"type":"user_nicename","value":"Aditya Nori","user_id":30829,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Aditya Nori"},{"type":"user_nicename","value":"Aseem Rastogi","user_id":36021,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Aseem Rastogi"},{"type":"text","value":"Mayank Rathee","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Rahul Sharma","user_id":36308,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Rahul Sharma"},{"type":"text","value":"Shubham Ugare","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199561,199562],"msr_event":[],"msr_group":[144939,761911,780706],"msr_project":[507611,169659],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":507611,"post_title":"EzPC (Easy Secure Multi-party Computation)","post_name":"ezpc-easy-secure-multi-party-computation","post_type":"msr-project","post_date":"2018-10-10 01:30:32","post_modified":"2025-01-15 20:59:33","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/ezpc-easy-secure-multi-party-computation\/","post_excerpt":"Consider the following scenario: Two hospitals, each having sensitive patient data, must compute statistical information about their joint data. Or, one of the hospitals has a pre-trained ML model based on sensitive patient data and another hospital either wants to learn inference results for its sensitive patient data or the accuracy of the model for its sensitive patient data. In all cases, privacy regulations forbid them from sharing the data and\/or the model in the…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/507611"}]}},{"ID":169659,"post_title":"Project InnerEye - Democratizing Medical Imaging AI","post_name":"medical-image-analysis","post_type":"msr-project","post_date":"2008-10-07 05:22:18","post_modified":"2023-07-28 05:51:32","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/medical-image-analysis\/","post_excerpt":"InnerEye is a research project that uses state of the art\u00a0machine learning\u00a0technology to build innovative tools for the automatic, quantitative analysis of three-dimensional medical images.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/169659"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/710251","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/710251\/revisions"}],"predecessor-version":[{"id":710257,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/710251\/revisions\/710257"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=710251"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=710251"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=710251"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=710251"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=710251"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=710251"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=710251"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=710251"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=710251"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=710251"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=710251"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=710251"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=710251"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=710251"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=710251"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=710251"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}