{"id":714688,"date":"2020-12-30T03:08:30","date_gmt":"2020-12-30T11:08:30","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=714688"},"modified":"2020-12-30T03:08:30","modified_gmt":"2020-12-30T11:08:30","slug":"data2text-studio-automated-text-generation-from-structured-data","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/data2text-studio-automated-text-generation-from-structured-data\/","title":{"rendered":"Data2Text Studio: Automated Text Generation from Structured Data"},"content":{"rendered":"
Data2Text Studio is a platform for automated text generation from structured data. It is equipped with a Semi-HMMs model to extract high-quality templates and corresponding trigger conditions from parallel data automatically, which improves the interactivity and interpretability of the generated text. In addition, several easy-to-use tools are provided for developers to edit templates of pre-trained models, and APIs are released for developers to call the pre-trained model to generate texts in third-party applications. We conduct experiments on RotoWire datasets for template extraction and text generation. The results show that our model achieves improvements on both tasks.<\/p>\n","protected":false},"excerpt":{"rendered":"
Data2Text Studio is a platform for automated text generation from structured data. It is equipped with a Semi-HMMs model to extract high-quality templates and corresponding trigger conditions from parallel data automatically, which improves the interactivity and interpretability of the generated text. In addition, several easy-to-use tools are provided for developers to edit templates of pre-trained […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246691,248845,248503,248095,248404,248848,248731,248761],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-714688","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-human-language-technologies","msr-locale-en_us","msr-field-of-study-computer-science","msr-field-of-study-data-model","msr-field-of-study-information-retrieval","msr-field-of-study-interactivity","msr-field-of-study-interpretability","msr-field-of-study-studio","msr-field-of-study-template","msr-field-of-study-text-generation"],"msr_publishername":"Association for Computational Linguistics","msr_edition":"","msr_affiliation":"","msr_published_date":"2018-11-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.aclweb.org\/anthology\/D18-2003.pdf","label_id":"243132","label":0},{"type":"doi","viewUrl":"false","id":"false","title":"10.18653\/V1\/D18-2003","label_id":"243106","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/aclanthology.info\/papers\/D18-2003\/d18-2003","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/dblp.uni-trier.de\/db\/conf\/emnlp\/emnlp2018-d.html#DouQWYL18","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.aclweb.org\/anthology\/D18-2003","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Longxu Dou","user_id":0,"rest_url":false},{"type":"text","value":"Guanghui Qin","user_id":0,"rest_url":false},{"type":"text","value":"Jinpeng Wang","user_id":0,"rest_url":false},{"type":"text","value":"Jin-Ge Yao","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Chin-Yew Lin","user_id":31493,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Chin-Yew Lin"}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[144919],"msr_project":[717085],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":717085,"post_title":"Data2Text: Automated Text Generation from Structured Data","post_name":"data2text-automated-text-generation-from-structured-data","post_type":"msr-project","post_date":"2021-01-13 07:51:45","post_modified":"2021-01-15 00:46:14","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/data2text-automated-text-generation-from-structured-data\/","post_excerpt":"The Data2Text project aims to automatically generate fluent and fact-based descriptions or utterances given a data table. Typical business applications for text generation include the generation of financial and sports news stories, the generation of product descriptions, the analysis and interpretation of business data, and the analysis and interpretation of Internet of Things data, etc. Figure 1 gives an example of the automatic generation of weather forecasts. Figure 1a is a structured weather data collected…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/717085"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/714688"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/714688\/revisions"}],"predecessor-version":[{"id":714691,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/714688\/revisions\/714691"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=714688"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=714688"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=714688"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=714688"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=714688"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=714688"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=714688"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=714688"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=714688"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=714688"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=714688"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=714688"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=714688"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=714688"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=714688"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=714688"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}