{"id":714718,"date":"2020-12-30T03:18:19","date_gmt":"2020-12-30T11:18:19","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=714718"},"modified":"2021-03-24T19:02:51","modified_gmt":"2021-03-25T02:02:51","slug":"list-only-entity-linking","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/list-only-entity-linking\/","title":{"rendered":"List-only Entity Linking"},"content":{"rendered":"

Traditional Entity Linking (EL) technologies rely on rich structures and properties in the target knowledge base (KB). However, in many applications, the KB may be as simple and sparse as lists of names of the same type (e.g., lists of products). We call it as List-only Entity Linking problem. Fortunately, some mentions may have more cues for linking, which can be used as seed mentions to bridge other mentions and the uninformative entities. In this work, we select most linkable mentions as seed mentions and disambiguate other mentions by comparing them with the seed mentions rather than directly with the entities. Our experiments on linking mentions to seven automatically mined lists show promising results and demonstrate the effectiveness of our approach.<\/p>\n","protected":false},"excerpt":{"rendered":"

Traditional Entity Linking (EL) technologies rely on rich structures and properties in the target knowledge base (KB). However, in many applications, the KB may be as simple and sparse as lists of names of the same type (e.g., lists of products). We call it as List-only Entity Linking problem. Fortunately, some mentions may have more […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13545,13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246691,248788,248503,248683],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-714718","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-human-language-technologies","msr-research-area-search-information-retrieval","msr-locale-en_us","msr-field-of-study-computer-science","msr-field-of-study-entity-linking","msr-field-of-study-information-retrieval","msr-field-of-study-knowledge-base"],"msr_publishername":"Association for Computational Linguistics","msr_edition":"","msr_affiliation":"","msr_published_date":"2017-7-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.aclweb.org\/anthology\/P17-2085.pdf","label_id":"243132","label":0},{"type":"doi","viewUrl":"false","id":"false","title":"10.18653\/V1\/P17-2085","label_id":"243106","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/dblp.uni-trier.de\/db\/conf\/acl\/acl2017-2.html#LinLJ17","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.aclweb.org\/anthology\/P17-2085\/","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Ying Lin","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Chin-Yew Lin","user_id":31493,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Chin-Yew Lin"},{"type":"text","value":"Heng Ji","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[144919],"msr_project":[792599,717721,714646],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":792599,"post_title":"Table Interpretation","post_name":"table-interpretation","post_type":"msr-project","post_date":"2021-11-05 02:02:36","post_modified":"2024-09-25 11:42:48","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/table-interpretation\/","post_excerpt":"Bringing out the power of semantics in tabular data Tables are commonly used to organize information, playing a key role in data analytics, scientific research, and business communication. The ability to automatically extract semantics in tables can empower many downstream applications such as data analytics, robotic process automation (RPA), knowledge base population, etc. In this project, we explore multiple aspects of semantic table understanding and real-world applications of such technologies. One of the outcomes of…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/792599"}]}},{"ID":717721,"post_title":"ezPitch: Connecting Salespersons and Customers through Relevant News","post_name":"ezpitch-connecting-salespersons-and-customers-through-relevant-news","post_type":"msr-project","post_date":"2021-01-19 08:25:06","post_modified":"2021-01-19 08:28:44","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/ezpitch-connecting-salespersons-and-customers-through-relevant-news\/","post_excerpt":"The goal of ezPitch is connecting salespersons and customers through relevant news. Why is this important? In the daily work, the sales persons need to search, track and explore the related news about customers before talking to them. For example, if there is management change in the customer\u2019s company. The sales person may need to find a way to re-build the relationship with the new leadership. If the customer\u2019s company announces an earnings report which…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/717721"}]}},{"ID":714646,"post_title":"VERT: Versatile Entity Recognition & Disambiguation Toolkit","post_name":"vert-versatile-entity-recognition-disambiguation-toolkit","post_type":"msr-project","post_date":"2020-12-30 02:54:35","post_modified":"2021-10-13 21:15:01","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/vert-versatile-entity-recognition-disambiguation-toolkit\/","post_excerpt":"While knowledge about entities is a key building block in the mentioned systems, creating effective\/efficient models for real-world scenarios remains a challenge (tech\/data\/real workloads). Based on such needs, we've created VERT - a Versatile Entity Recognition & Disambiguation Toolkit. VERT is a pragmatic toolkit that combines rules and ML, offering both powerful pretrained models for core entity types (recognition and linking) and the easy creation of custom models. Custom models use our deep learning-based NER\/EL…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/714646"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/714718"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/714718\/revisions"}],"predecessor-version":[{"id":714721,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/714718\/revisions\/714721"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=714718"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=714718"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=714718"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=714718"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=714718"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=714718"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=714718"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=714718"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=714718"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=714718"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=714718"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=714718"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=714718"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=714718"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=714718"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=714718"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}