{"id":714772,"date":"2020-12-30T04:08:29","date_gmt":"2020-12-30T12:08:29","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=714772"},"modified":"2021-03-24T18:58:03","modified_gmt":"2021-03-25T01:58:03","slug":"context-aware-entity-morph-decoding","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/context-aware-entity-morph-decoding\/","title":{"rendered":"Context-aware Entity Morph Decoding"},"content":{"rendered":"
People create morphs, a special type of fake alternative names, to achieve certain communication goals such as expressing strong sentiment or evading censors. For example, \u201cBlack Mamba\u201d, the name for a highly venomous snake, is a morph that Kobe Bryant created for himself due to his agility and aggressiveness in playing basketball games. This paper presents the first end-to-end context-aware entity morph decoding system that can automatically identify, disambiguate, verify morph mentions based on specific contexts, and resolve them to target entities. Our approach is based on an absolute \u201ccold-start\u201d it does not require any candidate morph or target entity lists as input, nor any manually constructed morph-target pairs for training. We design a semi-supervised collective inference framework for morph mention extraction, and compare various deep learning based approaches for morph resolution. Our approach achieved significant improvement over the state-of-the-art method (Huang et al., 2013), which used a large amount of training data.<\/p>\n","protected":false},"excerpt":{"rendered":"
People create morphs, a special type of fake alternative names, to achieve certain communication goals such as expressing strong sentiment or evading censors. For example, \u201cBlack Mamba\u201d, the name for a highly venomous snake, is a morph that Kobe Bryant created for himself due to his agility and aggressiveness in playing basketball games. This paper […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246694,248980,246691,248974,246658,248668,246808,246769,248977],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-714772","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-human-language-technologies","msr-locale-en_us","msr-field-of-study-artificial-intelligence","msr-field-of-study-basketball-games","msr-field-of-study-computer-science","msr-field-of-study-decoding-methods","msr-field-of-study-deep-learning","msr-field-of-study-inference","msr-field-of-study-natural-language-processing","msr-field-of-study-training-set","msr-field-of-study-venomous-snake"],"msr_publishername":"Association for Computational Linguistics (ACL)","msr_edition":"","msr_affiliation":"","msr_published_date":"2015-7-26","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":0,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.aclweb.org\/anthology\/P15-1057.pdf","label_id":"243132","label":0},{"type":"doi","viewUrl":"false","id":"false","title":"10.3115\/V1\/P15-1057","label_id":"243106","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/aclweb.org\/anthology\/P15-1057","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/dblp.uni-trier.de\/db\/conf\/acl\/acl2015-1.html#ZhangHPLLJKWSHY15","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/experts.illinois.edu\/en\/publications\/context-aware-entity-morph-decoding","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Boliang Zhang","user_id":0,"rest_url":false},{"type":"text","value":"Hongzhao Huang","user_id":0,"rest_url":false},{"type":"text","value":"Xiaoman Pan","user_id":0,"rest_url":false},{"type":"text","value":"Sujian Li","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Chin-Yew Lin","user_id":31493,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Chin-Yew Lin"},{"type":"text","value":"Heng Ji","user_id":0,"rest_url":false},{"type":"text","value":"Kevin Knight","user_id":0,"rest_url":false},{"type":"text","value":"Zhen Wen","user_id":0,"rest_url":false},{"type":"text","value":"Yizhou Sun","user_id":0,"rest_url":false},{"type":"text","value":"Jiawei Han","user_id":0,"rest_url":false},{"type":"text","value":"Bulent Yener","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[144919],"msr_project":[714646],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":714646,"post_title":"VERT: Versatile Entity Recognition & Disambiguation Toolkit","post_name":"vert-versatile-entity-recognition-disambiguation-toolkit","post_type":"msr-project","post_date":"2020-12-30 02:54:35","post_modified":"2021-10-13 21:15:01","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/vert-versatile-entity-recognition-disambiguation-toolkit\/","post_excerpt":"While knowledge about entities is a key building block in the mentioned systems, creating effective\/efficient models for real-world scenarios remains a challenge (tech\/data\/real workloads). Based on such needs, we've created VERT - a Versatile Entity Recognition & Disambiguation Toolkit. VERT is a pragmatic toolkit that combines rules and ML, offering both powerful pretrained models for core entity types (recognition and linking) and the easy creation of custom models. Custom models use our deep learning-based NER\/EL…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/714646"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/714772"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/714772\/revisions"}],"predecessor-version":[{"id":714781,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/714772\/revisions\/714781"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=714772"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=714772"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=714772"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=714772"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=714772"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=714772"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=714772"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=714772"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=714772"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=714772"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=714772"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=714772"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=714772"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=714772"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=714772"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=714772"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}