{"id":716161,"date":"2021-01-08T07:08:34","date_gmt":"2021-01-08T15:08:34","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=716161"},"modified":"2021-03-24T18:55:59","modified_gmt":"2021-03-25T01:55:59","slug":"comparable-entity-mining-from-comparative-questions","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/comparable-entity-mining-from-comparative-questions\/","title":{"rendered":"Comparable Entity Mining from Comparative Questions"},"content":{"rendered":"
Comparing one thing with another is a typical part of human decision making process. However, it is not always easy to know what to compare and what are the alternatives. In this paper, we present a novel way to automatically mine comparable entities from comparative questions that users posted online to address this difficulty. To ensure high precision and high recall, we develop a weakly supervised bootstrapping approach for comparative question identification and comparable entity extraction by leveraging a large collection of online question archive. The experimental results show our method achieves F1-measure of 82.5 percent in comparative question identification and 83.3 percent in comparable entity extraction. Both significantly outperform an existing state-of-the-art method. Additionally, our ranking results show highly relevance to user’s comparison intents in web.<\/p>\n","protected":false},"excerpt":{"rendered":"
Comparing one thing with another is a typical part of human decision making process. However, it is not always easy to know what to compare and what are the alternatives. In this paper, we present a novel way to automatically mine comparable entities from comparative questions that users posted online to address this difficulty. To […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13545,13555],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[249475,248794,246691,249478,248491,248503,249472,248644,248929,247363],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-716161","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-human-language-technologies","msr-research-area-search-information-retrieval","msr-locale-en_us","msr-field-of-study-algorithm-design","msr-field-of-study-bootstrapping","msr-field-of-study-computer-science","msr-field-of-study-human-decision","msr-field-of-study-information-extraction","msr-field-of-study-information-retrieval","msr-field-of-study-pattern-matching","msr-field-of-study-ranking","msr-field-of-study-recall","msr-field-of-study-the-internet"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2013-7-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"IEEE Transactions on Knowledge and Data Engineering","msr_volume":"25","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"7","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"10.1109\/TKDE.2011.210","label_id":"243106","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.aclweb.org\/anthology\/P10-1067.pdf","label_id":"243132","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/dblp.uni-trier.de\/db\/journals\/tkde\/tkde25.html#LiLSL13","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/ieeexplore.ieee.org\/xpl\/articleDetails.jsp?arnumber=6042862","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.aclweb.org\/anthology\/P10-1067","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Shasha Li","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Chin-Yew Lin","user_id":31493,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Chin-Yew Lin"},{"type":"text","value":"Young-In Song","user_id":0,"rest_url":false},{"type":"text","value":"Zhoujun Li","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[144919],"msr_project":[714646],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":{"projects":[{"ID":714646,"post_title":"VERT: Versatile Entity Recognition & Disambiguation Toolkit","post_name":"vert-versatile-entity-recognition-disambiguation-toolkit","post_type":"msr-project","post_date":"2020-12-30 02:54:35","post_modified":"2021-10-13 21:15:01","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/vert-versatile-entity-recognition-disambiguation-toolkit\/","post_excerpt":"While knowledge about entities is a key building block in the mentioned systems, creating effective\/efficient models for real-world scenarios remains a challenge (tech\/data\/real workloads). Based on such needs, we've created VERT - a Versatile Entity Recognition & Disambiguation Toolkit. VERT is a pragmatic toolkit that combines rules and ML, offering both powerful pretrained models for core entity types (recognition and linking) and the easy creation of custom models. Custom models use our deep learning-based NER\/EL…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/714646"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/716161"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/716161\/revisions"}],"predecessor-version":[{"id":716164,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/716161\/revisions\/716164"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=716161"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=716161"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=716161"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=716161"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=716161"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=716161"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=716161"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=716161"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=716161"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=716161"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=716161"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=716161"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=716161"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=716161"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=716161"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=716161"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}