{"id":717736,"date":"2021-01-17T22:56:48","date_gmt":"2021-01-18T06:56:48","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=717736"},"modified":"2022-10-09T20:51:47","modified_gmt":"2022-10-10T03:51:47","slug":"return-based-contrastive-representation-learning-for-reinforcement-learning","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/return-based-contrastive-representation-learning-for-reinforcement-learning\/","title":{"rendered":"Return-Based Contrastive Representation Learning for Reinforcement Learning"},"content":{"rendered":"

Recently, various auxiliary tasks have been proposed to accelerate representation learning and improve sample efficiency in deep reinforcement learning (RL). Existing auxiliary tasks do not take the characteristics of RL problems into consideration and are unsupervised. By leveraging returns, the most important feedback signals in RL, we propose a novel auxiliary task that forces the learnt representations to discriminate state-action pairs with different returns. Our auxiliary loss is theoretically justified to learn representations that capture the structure of a new form of state-action abstraction, under which state-action pairs with similar return distributions are aggregated together. Empirically, our algorithm outperforms strong baselines on complex tasks in DeepMind Control suite and Atari games, and achieves even better performance when combined with existing auxiliary tasks.<\/p>\n","protected":false},"excerpt":{"rendered":"

Recently, various auxiliary tasks have been proposed to accelerate representation learning and improve sample efficiency in deep reinforcement learning (RL). Existing auxiliary tasks do not take the characteristics of RL problems into consideration and are unsupervised. By leveraging returns, the most important feedback signals in RL, we propose a novel auxiliary task that forces the […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-717736","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2021-1-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/openreview.net\/forum?id=_TM6rT7tXke","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Guoqing Liu","user_id":0,"rest_url":false},{"type":"text","value":"Chuheng Zhang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Li Zhao","user_id":36152,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Li Zhao"},{"type":"user_nicename","value":"Tao Qin","user_id":33871,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Tao Qin"},{"type":"text","value":"Jinhua Zhu","user_id":0,"rest_url":false},{"type":"text","value":"Li Jian","user_id":0,"rest_url":false},{"type":"text","value":"Nenghai Yu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Tie-Yan Liu","user_id":34431,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Tie-Yan Liu"}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[],"msr_project":[708421],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":708421,"post_title":"Reinforcement Learning: Algorithms and Applications","post_name":"reinforcement-learning-algorithms-and-applications","post_type":"msr-project","post_date":"2020-11-27 18:15:11","post_modified":"2021-12-12 01:42:59","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/reinforcement-learning-algorithms-and-applications\/","post_excerpt":"In this project, we focus on developing RL algorithms, especially deep RL algorithms for real-world applications. We are interesting in the following topics. Distributional Reinforcement Learning. Distributional Reinforcement Learning focuses on developing RL algorithms which model the return distribution, rather than the expectation as in conventional RL. Such algorithms have been demonstrated to be effective when combined with deep neural network for function approximation. The goal here is to explore the potential of distributional RL…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/708421"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/717736"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/717736\/revisions"}],"predecessor-version":[{"id":717739,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/717736\/revisions\/717739"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=717736"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=717736"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=717736"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=717736"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=717736"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=717736"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=717736"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=717736"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=717736"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=717736"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=717736"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=717736"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=717736"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=717736"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=717736"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=717736"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}