{"id":723712,"date":"2021-02-05T17:25:06","date_gmt":"2021-02-06T01:25:06","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=723712"},"modified":"2021-03-12T15:26:41","modified_gmt":"2021-03-12T23:26:41","slug":"query-and-resource-optimization-bridging-the-gap","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/query-and-resource-optimization-bridging-the-gap\/","title":{"rendered":"Query and Resource Optimization: Bridging the Gap"},"content":{"rendered":"
Modern big data systems run on cloud environments where resources are shared among several users and applications. As a result, declarative user queries need to be optimized and executed over resources that constantly change and are provisioned on demand for each job. This requires us to rethink traditional query optimization designed for systems that run on dedicated resources. In this paper, we show evidence that the choice of query plans depends heavily on the resources that the plan will be executed on. The current practice of determining query plans without accounting for resources could lead to significant performance loss in popular big data systems, such as Hive and SparkSQL. Therefore, we make a case for Query and Resource Optimization (or QROP), i.e., choosing both the query plan and the resource configuration at the same time, and present a research agenda towards this direction.<\/p>\n","protected":false},"excerpt":{"rendered":"
Modern big data systems run on cloud environments where resources are shared among several users and applications. As a result, declarative user queries need to be optimized and executed over resources that constantly change and are provisioned on demand for each job. This requires us to rethink traditional query optimization designed for systems that run […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13563],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[247552,251695,247555,246691,249175,248884,251698,251692,249145,251563],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-723712","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-data-platform-analytics","msr-locale-en_us","msr-field-of-study-big-data","msr-field-of-study-bridging-networking","msr-field-of-study-cloud-computing","msr-field-of-study-computer-science","msr-field-of-study-current-practice","msr-field-of-study-database","msr-field-of-study-on-demand","msr-field-of-study-provisioning","msr-field-of-study-query-optimization","msr-field-of-study-query-plan"],"msr_publishername":"IEEE","msr_edition":"","msr_affiliation":"","msr_published_date":"2018-4-15","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"10.1109\/ICDE.2018.00156","label_id":"243106","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2018\/02\/qrop-icde2018.pdf","label_id":"243132","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Lalitha Viswanathan","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Alekh Jindal","user_id":37419,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Alekh Jindal"},{"type":"user_nicename","value":"Konstantinos Karanasos","user_id":32565,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Konstantinos Karanasos"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[472449],"msr_group":[684024],"msr_project":[723529,723523],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":723529,"post_title":"Peregrine","post_name":"peregrine","post_type":"msr-project","post_date":"2021-02-05 16:07:39","post_modified":"2021-02-05 18:32:41","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/peregrine\/","post_excerpt":"Database administrators (DBAs) were traditionally responsible for optimizing the on-premise database workloads. However, with the rise of cloud data services where cloud providers offer fully managed data processing capabilities, the role of a DBA is completely missing. At the same time, workload optimization becomes even more important for reducing the total costs of operation and making data processing economically viable in the cloud. This project revisits workload optimization in the context of these emerging cloud-based…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/723529"}]}},{"ID":723523,"post_title":"Resource Optimization","post_name":"resource-optimization","post_type":"msr-project","post_date":"2021-02-05 16:05:47","post_modified":"2021-02-05 18:34:37","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/resource-optimization\/","post_excerpt":"The last decade has witnessed a tremendous interest in large scale data processing, and consequently the rise of so called big data systems. Apart from handling the scale and complexity of big data, it is also critical to improve the resource efficiency and reduce operational costs in these systems. Interestingly, resource efficiency becomes an even harder problem with the new breed of so called\u00a0serverless query processing, where users do not have to setup clusters. Instead,…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/723523"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/723712"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/723712\/revisions"}],"predecessor-version":[{"id":723715,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/723712\/revisions\/723715"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=723712"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=723712"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=723712"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=723712"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=723712"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=723712"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=723712"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=723712"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=723712"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=723712"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=723712"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=723712"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=723712"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=723712"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=723712"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=723712"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}