{"id":723769,"date":"2021-02-05T17:50:00","date_gmt":"2021-02-06T01:50:00","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=723769"},"modified":"2021-02-05T17:51:45","modified_gmt":"2021-02-06T01:51:45","slug":"towards-plan-aware-resource-allocation-in-serverless-query-processing","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/towards-plan-aware-resource-allocation-in-serverless-query-processing\/","title":{"rendered":"Towards Plan-aware Resource Allocation in Serverless Query Processing"},"content":{"rendered":"

Resource allocation for serverless query processing is a challenge. Unfortunately, prior approaches have treated queries as black boxes, thereby missing significant resource optimization opportunities. In this paper, we propose a plan-aware resource allocation approach where the resources are adaptively allocated based on the runtime characteristics of the query plan. We show the savings opportunity from such an allocation scheme over production SCOPE workloads at Microsoft. We present our current implementation of a greedy version that periodically estimates the peak resource for the remaining of the query as the query execution progresses. Our experimental evaluation shows that such an implementation could already save more than 8% resource usage over one of our production virtual clusters. We conclude by opening the discussion on various strategies for plan-aware resource allocation and their implications on the cloud computing stack.<\/p>\n","protected":false},"excerpt":{"rendered":"

Resource allocation for serverless query processing is a challenge. Unfortunately, prior approaches have treated queries as black boxes, thereby missing significant resource optimization opportunities. In this paper, we propose a plan-aware resource allocation approach where the resources are adaptively allocated based on the runtime characteristics of the query plan. We show the savings opportunity from […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13563],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246691,248884,248584],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-723769","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-data-platform-analytics","msr-locale-en_us","msr-field-of-study-computer-science","msr-field-of-study-database","msr-field-of-study-resource-allocation"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-7-13","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.usenix.org\/system\/files\/hotcloud20_paper_bag.pdf","label_id":"243132","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.usenix.org\/conference\/hotcloud20\/presentation\/bag","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Malay Bag","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Alekh Jindal","user_id":37419,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Alekh Jindal"},{"type":"text","value":"Hiren Patel","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[684024],"msr_project":[723529,723523],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":723529,"post_title":"Peregrine","post_name":"peregrine","post_type":"msr-project","post_date":"2021-02-05 16:07:39","post_modified":"2021-02-05 18:32:41","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/peregrine\/","post_excerpt":"Database administrators (DBAs) were traditionally responsible for optimizing the on-premise database workloads. However, with the rise of cloud data services where cloud providers offer fully managed data processing capabilities, the role of a DBA is completely missing. At the same time, workload optimization becomes even more important for reducing the total costs of operation and making data processing economically viable in the cloud. This project revisits workload optimization in the context of these emerging cloud-based…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/723529"}]}},{"ID":723523,"post_title":"Resource Optimization","post_name":"resource-optimization","post_type":"msr-project","post_date":"2021-02-05 16:05:47","post_modified":"2021-02-05 18:34:37","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/resource-optimization\/","post_excerpt":"The last decade has witnessed a tremendous interest in large scale data processing, and consequently the rise of so called big data systems. Apart from handling the scale and complexity of big data, it is also critical to improve the resource efficiency and reduce operational costs in these systems. Interestingly, resource efficiency becomes an even harder problem with the new breed of so called\u00a0serverless query processing, where users do not have to setup clusters. Instead,…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/723523"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/723769"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/723769\/revisions"}],"predecessor-version":[{"id":723772,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/723769\/revisions\/723772"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=723769"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=723769"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=723769"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=723769"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=723769"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=723769"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=723769"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=723769"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=723769"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=723769"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=723769"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=723769"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=723769"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=723769"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=723769"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=723769"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}