{"id":724231,"date":"2021-02-08T21:09:39","date_gmt":"2021-02-09T05:09:39","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=724231"},"modified":"2022-06-26T14:09:08","modified_gmt":"2022-06-26T21:09:08","slug":"cogra","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/cogra\/","title":{"rendered":"Event Trend Aggregation Under Rich Event Matching Semantics"},"content":{"rendered":"
Streaming applications from cluster monitoring to algorithmic trading deploy Kleene queries to detect and aggregate event trends. Rich event matching semantics determine how to compose events into trends. The expressive power of state-of-the-art streaming systems remains limited since they do not support many of these semantics. Worse yet, they suffer from long delays and high memory costs because they maintain aggregates at a fine granularity. To overcome these limitations, our Coarse-Grained Event Trend Aggregation (Cogra) approach supports a rich variety of event matching semantics within one system. Better yet, Cogra incrementally maintains aggregates at the coarsest granularity possible for each of these semantics. In this way, Cogra minimizes the number of aggregates — reducing both time and space complexity. Our experiments demonstrate that Cogra achieves up to six orders of magnitude speed-up and up to seven orders of magnitude memory reduction compared to state-of-the-art approaches.<\/p>\n","protected":false},"excerpt":{"rendered":"
Streaming applications from cluster monitoring to algorithmic trading deploy Kleene queries to detect and aggregate event trends. Rich event matching semantics determine how to compose events into trends. The expressive power of state-of-the-art streaming systems remains limited since they do not support many of these semantics. Worse yet, they suffer from long delays and high […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13563],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[251818,251812,246691,251821,251182,251815,249145,248851,248341],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-724231","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-data-platform-analytics","msr-locale-en_us","msr-field-of-study-algorithmic-trading","msr-field-of-study-complex-event-processing","msr-field-of-study-computer-science","msr-field-of-study-expressive-power","msr-field-of-study-granularity","msr-field-of-study-high-memory","msr-field-of-study-query-optimization","msr-field-of-study-semantics","msr-field-of-study-theoretical-computer-science"],"msr_publishername":"ACM","msr_edition":"","msr_affiliation":"","msr_published_date":"2019-6-24","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":0,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"10.1145\/3299869.3319862","label_id":"243106","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3299869.3319862","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Olga Poppe","user_id":40054,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Olga Poppe"},{"type":"text","value":"Chuan Lei","user_id":0,"rest_url":false},{"type":"text","value":"Elke A. Rundensteiner","user_id":0,"rest_url":false},{"type":"text","value":"David Maier","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[],"msr_project":[724732],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":724732,"post_title":"Event Trend Analytics","post_name":"greta","post_type":"msr-project","post_date":"2021-02-09 12:44:42","post_modified":"2024-03-27 14:11:44","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/greta\/","post_excerpt":"Advances in hardware, software and communication networks have enabled applications to generate data at unprecedented volume and velocity. An important type of this data are event streams generated from financial transactions, health sensors, web logs, social media, mobile devices, and vehicles. The world is thus poised for a sea-change in time-critical applications from financial fraud detection to health care analytics empowered by inferring insights from event streams in real time. Event processing systems continuously evaluate…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/724732"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/724231","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/724231\/revisions"}],"predecessor-version":[{"id":724234,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/724231\/revisions\/724234"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=724231"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=724231"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=724231"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=724231"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=724231"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=724231"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=724231"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=724231"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=724231"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=724231"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=724231"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=724231"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=724231"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=724231"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=724231"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=724231"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}