{"id":724321,"date":"2021-02-08T21:51:03","date_gmt":"2021-02-09T05:51:03","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=724321"},"modified":"2021-02-08T21:51:03","modified_gmt":"2021-02-09T05:51:03","slug":"coded-elastic-computing","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/coded-elastic-computing\/","title":{"rendered":"Coded Elastic Computing"},"content":{"rendered":"

Cloud providers have recently introduced new offerings whereby spare computing resources are accessible at discounts compared to on-demand computing. Exploiting such opportunity is challenging inasmuch as such resources are accessed with low-priority and therefore can\u00a0elastically<\/em>\u00a0leave (through\u00a0preemption<\/em>) and join the computation at any time. In this paper, we design a new technique called\u00a0coded elastic computing<\/em>\u00a0enabling distributed computations over elastic resources. The proposed technique allows machines to leave the computation without sacrificing the algorithm-level performance, and, at the same time, adaptively reduce the workload at existing machines when new ones join the computation. Leveraging coded redundancy, our approach is able to achieve similar computational cost as the original (uncoded) method when all machines are present; the cost gracefully increases when machines are preempted and reduces when machines join. The performance of the proposed technique is evaluated on matrix-vector multiplication and linear regression tasks. In experimental validations, it can achieve exactly the same numerical result as the noiseless computation, while reducing the computation time by 46% when compared to non-adaptive coding schemes.<\/p>\n","protected":false},"excerpt":{"rendered":"

Cloud providers have recently introduced new offerings whereby spare computing resources are accessible at discounts compared to on-demand computing. Exploiting such opportunity is challenging inasmuch as such resources are accessed with low-priority and therefore can\u00a0elastically\u00a0leave (through\u00a0preemption) and join the computation at any time. In this paper, we design a new technique called\u00a0coded elastic computing\u00a0enabling distributed […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[247555,250378,246691,251878,248608,251872,249424,251875,249151],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-724321","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-systems-and-networking","msr-locale-en_us","msr-field-of-study-cloud-computing","msr-field-of-study-computation","msr-field-of-study-computer-science","msr-field-of-study-multiplication","msr-field-of-study-parallel-computing","msr-field-of-study-preemption","msr-field-of-study-redundancy-engineering","msr-field-of-study-spare-part","msr-field-of-study-workload"],"msr_publishername":"arXiv","msr_edition":"","msr_affiliation":"","msr_published_date":"2019-5-26","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"10.1109\/ISIT.2019.8849212","label_id":"243106","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/pdf\/1812.06411.pdf","label_id":"243132","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/dblp.uni-trier.de\/db\/journals\/corr\/corr1812.html#abs-1812-06411","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/ui.adsabs.harvard.edu\/abs\/2018arXiv181206411Y\/abstract","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Yaoqing Yang","user_id":0,"rest_url":false},{"type":"text","value":"Pulkit Grover","user_id":0,"rest_url":false},{"type":"text","value":"Soummya Kar","user_id":0,"rest_url":false},{"type":"text","value":"Saeed Amizadeh","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Matteo Interlandi","user_id":39784,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Matteo Interlandi"},{"type":"user_nicename","value":"Markus Weimer","user_id":33038,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Markus Weimer"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/724321"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/724321\/revisions"}],"predecessor-version":[{"id":724324,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/724321\/revisions\/724324"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=724321"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=724321"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=724321"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=724321"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=724321"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=724321"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=724321"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=724321"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=724321"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=724321"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=724321"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=724321"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=724321"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=724321"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=724321"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=724321"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}