{"id":724573,"date":"2021-02-09T11:35:22","date_gmt":"2021-02-09T19:35:22","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=724573"},"modified":"2022-06-26T13:56:17","modified_gmt":"2022-06-26T20:56:17","slug":"muse","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/muse\/","title":{"rendered":"Muse: Multi-query Event Trend Aggregation"},"content":{"rendered":"

Streaming analytics deploy Kleene pattern queries to detect and aggregate event trends on high-rate data streams. Despite increasing workloads, most state-of-the-art systems process each query independently, thus missing cost-saving sharing opportunities. Sharing event trend aggregation poses several technical challenges. First, Kleene patterns are in general difficult to share due to complex nesting and arbitrarily long matches. Second, not all sharing opportunities are beneficial because sharing Kleene patterns incurs non-trivial overhead to ensure the correctness of final aggregation results. We propose MUSE (Multi-query Shared Event trend aggregation), the first framework that shares aggregation queries with Kleene patterns while avoiding expensive trend construction. To find the beneficial sharing plan, the MUSE optimizer effectively selects robust sharing candidates from the exponentially large search space. Our experiments demonstrate that MUSE increases throughput by 4 orders of magnitude compared to state-of-the-art approaches.<\/p>\n","protected":false},"excerpt":{"rendered":"

Streaming analytics deploy Kleene pattern queries to detect and aggregate event trends on high-rate data streams. Despite increasing workloads, most state-of-the-art systems process each query independently, thus missing cost-saving sharing opportunities. Sharing event trend aggregation poses several technical challenges. First, Kleene patterns are in general difficult to share due to complex nesting and arbitrarily long […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[246574],"research-area":[13563],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-724573","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-highlight-award","msr-research-area-data-platform-analytics","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-10-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"Best short paper.","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":0,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/dl.acm.org\/doi\/10.1145\/3340531.3412138","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Allison Rozet","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Olga Poppe","user_id":40054,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Olga Poppe"},{"type":"text","value":"Chuan Lei","user_id":0,"rest_url":false},{"type":"text","value":"Elke A. Rundensteiner","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[],"msr_project":[724732],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":724732,"post_title":"Event Trend Analytics","post_name":"greta","post_type":"msr-project","post_date":"2021-02-09 12:44:42","post_modified":"2024-03-27 14:11:44","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/greta\/","post_excerpt":"Advances in hardware, software and communication networks have enabled applications to generate data at unprecedented volume and velocity. An important type of this data are event streams generated from financial transactions, health sensors, web logs, social media, mobile devices, and vehicles. The world is thus poised for a sea-change in time-critical applications from financial fraud detection to health care analytics empowered by inferring insights from event streams in real time. Event processing systems continuously evaluate…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/724732"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/724573","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/724573\/revisions"}],"predecessor-version":[{"id":724588,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/724573\/revisions\/724588"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=724573"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=724573"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=724573"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=724573"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=724573"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=724573"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=724573"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=724573"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=724573"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=724573"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=724573"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=724573"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=724573"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=724573"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=724573"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=724573"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}