{"id":729763,"date":"2021-03-08T08:30:48","date_gmt":"2021-03-08T16:30:48","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=729763"},"modified":"2021-11-17T13:19:04","modified_gmt":"2021-11-17T21:19:04","slug":"representation-learning-for-event-based-visuomotor-policies","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/representation-learning-for-event-based-visuomotor-policies\/","title":{"rendered":"Representation Learning for Event-based Visuomotor Policies"},"content":{"rendered":"
Event-based cameras are dynamic vision sensors that can provide asynchronous measurements of changes in per-pixel brightness at a microsecond level. This makes them significantly faster than conventional frame-based cameras, and an appealing choice for high-speed navigation. While an interesting sensor modality, this asynchronous data poses a challenge for common machine learning techniques. In this paper, we present an event variational autoencoder for unsupervised representation learning from asynchronous event camera data. We show that it is feasible to learn compact representations from spatiotemporal event data to encode the context. Furthermore, we show that such pretrained representations can be beneficial for navigation, allowing for usage in reinforcement learning instead of end-to-end reward driven perception. We validate this framework of learning visuomotor policies by applying it to an obstacle avoidance scenario in simulation. We show that representations learnt from event data enable training fast control policies that can adapt to different control capacities, and demonstrate a higher degree of robustness than end-to-end learning from event images.<\/p>\n","protected":false},"excerpt":{"rendered":"
Event-based cameras are dynamic vision sensors that can provide asynchronous measurements of changes in per-pixel brightness at a microsecond level. This makes them significantly faster than conventional frame-based cameras, and an appealing choice for high-speed navigation. While an interesting sensor modality, this asynchronous data poses a challenge for common machine learning techniques. In this paper, […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13562],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246688,246682,249835],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-729763","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-computer-vision","msr-locale-en_us","msr-field-of-study-computer-vision","msr-field-of-study-pattern-recognition","msr-field-of-study-robotics"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2021-12-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2103.00806","label_id":"243109","label":0},{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2021\/03\/Event_Visuomotor_Policies.pdf","id":"731077","title":"event_visuomotor_policies","label_id":"243132","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":731077,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2021\/03\/Event_Visuomotor_Policies.pdf"},{"id":731071,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2021\/03\/cvpr.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Sai Vemprala","user_id":39180,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Sai Vemprala"},{"type":"text","value":"Sami Mian","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Ashish Kapoor","user_id":30903,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ashish Kapoor"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[761314],"msr_group":[867219],"msr_project":[607743,359810],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":607743,"post_title":"AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles","post_name":"airsim-high-fidelity-visual-and-physical-simulation-for-autonomous-vehicles","post_type":"msr-project","post_date":"2019-09-08 02:51:15","post_modified":"2023-12-05 13:32:49","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/airsim-high-fidelity-visual-and-physical-simulation-for-autonomous-vehicles\/","post_excerpt":"GitHub Developing and testing algorithms for autonomous vehicles in real world is an expensive and time consuming process. Also, in order to utilize recent advances in machine intelligence and deep learning we need to collect a large amount of annotated training data in a variety of conditions and environments. We present a new simulator built on Unreal Engine that offers physically and visually realistic simulations for both of these goals. Our simulator includes a physics…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/607743"}]}},{"ID":359810,"post_title":"Aerial Informatics and Robotics Platform","post_name":"aerial-informatics-robotics-platform","post_type":"msr-project","post_date":"2017-02-15 06:00:48","post_modified":"2025-02-14 11:41:19","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/aerial-informatics-robotics-platform\/","post_excerpt":"Microsoft AirSim (Aerial Informatics and Robotics Simulation) is an open-source robotics simulation platform. From ground vehicles, wheeled robotics, aerial drones, and even static IoT devices, AirSim can capture data for models without costly field operations.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/359810"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/729763","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/729763\/revisions"}],"predecessor-version":[{"id":729772,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/729763\/revisions\/729772"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=729763"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=729763"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=729763"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=729763"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=729763"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=729763"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=729763"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=729763"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=729763"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=729763"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=729763"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=729763"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=729763"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=729763"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=729763"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=729763"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}