{"id":732184,"date":"2021-03-10T07:16:16","date_gmt":"2021-03-10T15:16:16","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=732184"},"modified":"2021-04-06T12:22:16","modified_gmt":"2021-04-06T19:22:16","slug":"panama-in-network-aggregation-for-shared-machine-learning-clusters","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/panama-in-network-aggregation-for-shared-machine-learning-clusters\/","title":{"rendered":"PANAMA: In-network Aggregation for Shared Machine Learning Clusters"},"content":{"rendered":"

We present PANAMA, a novel in-network aggregation framework for distributed machine learning (ML) training on shared clusters serving a variety of jobs. PANAMA comprises two key components: (i<\/em>) a custom in-network hardware accelerator that can support floating-point gradient aggregation at line rate without compromising accuracy; and (ii<\/em>) a lightweight load-balancing and congestion control protocol that exploits the unique communication patterns of ML data-parallel jobs to enable fair sharing of network resources across different jobs while ensuring high throughput for long-running jobs and low latency for short jobs and other latency-sensitive traffic. We evaluate the feasibility of PANAMA using an FPGA-based prototype with 10~Gbps transceivers and large-scale simulations. Our simulation results demonstrate that PANAMA decreases the average training time of large jobs by up to a factor of 1.34. More importantly, by drastically decreasing the load placed on the network by large data-parallel jobs, PANAMA provides significant benefits to non-aggregation flows too, especially latency-sensitive short flows, reducing their 99%-tile completion time by up to 4.5x.<\/p>\n","protected":false},"excerpt":{"rendered":"

We present PANAMA, a novel in-network aggregation framework for distributed machine learning (ML) training on shared clusters serving a variety of jobs. PANAMA comprises two key components: (i) a custom in-network hardware accelerator that can support floating-point gradient aggregation at line rate without compromising accuracy; and (ii) a lightweight load-balancing and congestion control protocol that […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[246574],"research-area":[13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-732184","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-highlight-award","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2021-4-5","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"Outstanding paper award (https:\/\/mlsys.org\/Conferences\/2021\/BestPapers)","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":0,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2021\/03\/gebara21panama.pdf","id":"732190","title":"gebara21panama","label_id":"243132","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":732190,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2021\/03\/gebara21panama.pdf"}],"msr-author-ordering":[{"type":"text","value":"Nadeen Gebara","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Paolo Costa","user_id":33218,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Paolo Costa"},{"type":"text","value":"Manya Ghobadi","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199561],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/732184"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/732184\/revisions"}],"predecessor-version":[{"id":732187,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/732184\/revisions\/732187"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=732184"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=732184"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=732184"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=732184"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=732184"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=732184"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=732184"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=732184"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=732184"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=732184"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=732184"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=732184"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=732184"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=732184"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=732184"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=732184"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}