{"id":736696,"date":"2021-03-29T09:09:48","date_gmt":"2021-03-29T16:09:48","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=736696"},"modified":"2021-03-29T09:09:48","modified_gmt":"2021-03-29T16:09:48","slug":"sieving-for-twin-smooth-integers-with-solutions-to-the-prouhet-tarry-escott-problem","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/sieving-for-twin-smooth-integers-with-solutions-to-the-prouhet-tarry-escott-problem\/","title":{"rendered":"Sieving for twin smooth integers with solutions to the Prouhet-Tarry-Escott problem"},"content":{"rendered":"
We give a sieving algorithm for finding pairs of consecutive smooth numbers that utilizes solutions to the Prouhet-Tarry-Escott (PTE) problem. Any such solution induces two degree-$n$ polynomials, $a(x)$ and $b(x)$, that differ by a constant integer $C$ and completely split into linear factors in $\\Z[x]$. It follows that for any $\\ell \\in \\Z$ such that $a(\\ell) \\equiv b(\\ell) \\equiv 0 \\bmod{C}$, the two integers $a(\\ell)\/C$ and $b(\\ell)\/C$ differ by 1 and necessarily contain $n$ factors of roughly the same size. For a fixed smoothness bound $B$, restricting the search to pairs of integers that are parameterized in this way increases the probability that they are $B$-smooth. Our algorithm combines a simple sieve with parametrizations given by a collection of solutions to the PTE problem.<\/p>\n
The motivation for finding large \\emph{twin smooth} integers lies in their application to compact isogeny-based post-quantum protocols. The recent key exchange scheme B-SIDH and the recent digital signature scheme SQISign both require large primes that lie between two smooth integers; finding such a prime can be seen as a special case of finding twin smooth integers under the additional stipulation that their sum is a prime $p$.<\/p>\n
When searching for cryptographic parameters with $2^{240} \\leq p <2^{256}$, an implementation of our sieve found primes $p$ where $p+1$ and $p-1$ are $2^{15}$-smooth; the smoothest prior parameters had a similar sized prime for which $p-1$ and $p+1$ were $2^{19}$-smooth. In targeting higher security levels, our sieve found a 376-bit prime lying between two $2^{21}$-smooth integers, a 384-bit prime lying between two $2^{22}$-smooth integers, and a 512-bit prime lying between two $2^{29}$-smooth integers. Our analysis shows that using previously known methods to find high-security instances subject to these smoothness bounds is computationally infeasible.<\/p>\n","protected":false},"excerpt":{"rendered":"
We give a sieving algorithm for finding pairs of consecutive smooth numbers that utilizes solutions to the Prouhet-Tarry-Escott (PTE) problem. Any such solution induces two degree-$n$ polynomials, $a(x)$ and $b(x)$, that differ by a constant integer $C$ and completely split into linear factors in $\\Z[x]$. It follows that for any $\\ell \\in \\Z$ such that […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13558],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[254197],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-736696","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-security-privacy-cryptography","msr-locale-en_us","msr-field-of-study-cryptography"],"msr_publishername":"Springer-Verlag","msr_edition":"","msr_affiliation":"","msr_published_date":"2021-5-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/eprint.iacr.org\/2020\/1283.pdf","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Craig Costello","user_id":31476,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Craig Costello"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/736696"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/736696\/revisions"}],"predecessor-version":[{"id":736699,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/736696\/revisions\/736699"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=736696"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=736696"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=736696"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=736696"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=736696"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=736696"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=736696"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=736696"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=736696"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=736696"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=736696"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=736696"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=736696"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=736696"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=736696"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=736696"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}