{"id":744307,"date":"2021-05-05T21:34:24","date_gmt":"2021-05-06T04:34:24","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=744307"},"modified":"2021-05-05T21:34:24","modified_gmt":"2021-05-06T04:34:24","slug":"efficient-linear-multiparty-psi-and-extensions-to-circuit-quorum-psi","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/efficient-linear-multiparty-psi-and-extensions-to-circuit-quorum-psi\/","title":{"rendered":"Efficient Linear Multiparty PSI and Extensions to Circuit\/Quorum PSI"},"content":{"rendered":"
Multiparty Private Set Intersection (mPSI), enables n parties, each holding private sets (each of size m) to compute the intersection of these private sets, without revealing any other information to each other. For security parameter \\lambda, this work gives secure protocols with asymptotic communication complexity O(nm\\lambda) while also being over 5x more concretely efficient than prior works, even for as few as 15 parties. Finally, we introduce and consider two important variants of mPSI – circuit PSI (that allows the parties to compute a function over the intersection set without revealing the intersection itself) and quorum PSI (that allows P1 to learn all the elements in his\/her set that are present in at least k other sets) and provide concretely efficient protocols for these variants.<\/p>\n","protected":false},"excerpt":{"rendered":"
Multiparty Private Set Intersection (mPSI), enables n parties, each holding private sets (each of size m) to compute the intersection of these private sets, without revealing any other information to each other. For security parameter \\lambda, this work gives secure protocols with asymptotic communication complexity O(nm\\lambda) while also being over 5x more concretely efficient than […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13558],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-744307","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-security-privacy-cryptography","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2021-5-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/eprint.iacr.org\/2021\/172","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Nishanth Chandran","user_id":33084,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Nishanth Chandran"},{"type":"text","value":"Nishka Dasgupta","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Divya Gupta","user_id":37766,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Divya Gupta"},{"type":"text","value":"Sai Lakshmi Bhavana Obbattu","user_id":0,"rest_url":false},{"type":"text","value":"Sruthi Sekar","user_id":0,"rest_url":false},{"type":"text","value":"Akash Shah","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199562],"msr_event":[],"msr_group":[144675,761911],"msr_project":[507611],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":507611,"post_title":"EzPC (Easy Secure Multi-party Computation)","post_name":"ezpc-easy-secure-multi-party-computation","post_type":"msr-project","post_date":"2018-10-10 01:30:32","post_modified":"2025-01-15 20:59:33","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/ezpc-easy-secure-multi-party-computation\/","post_excerpt":"Consider the following scenario: Two hospitals, each having sensitive patient data, must compute statistical information about their joint data. Or, one of the hospitals has a pre-trained ML model based on sensitive patient data and another hospital either wants to learn inference results for its sensitive patient data or the accuracy of the model for its sensitive patient data. In all cases, privacy regulations forbid them from sharing the data and\/or the model in the…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/507611"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/744307","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":7,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/744307\/revisions"}],"predecessor-version":[{"id":744331,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/744307\/revisions\/744331"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=744307"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=744307"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=744307"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=744307"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=744307"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=744307"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=744307"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=744307"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=744307"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=744307"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=744307"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=744307"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=744307"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=744307"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=744307"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=744307"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}