{"id":749905,"date":"2021-06-01T10:01:21","date_gmt":"2021-06-01T17:01:21","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=749905"},"modified":"2021-06-01T11:05:46","modified_gmt":"2021-06-01T18:05:46","slug":"posterior-differential-regularization-with-f-divergence-for-improving-model-robustness","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/posterior-differential-regularization-with-f-divergence-for-improving-model-robustness\/","title":{"rendered":"Posterior Differential Regularization with f-divergence for Improving Model Robustness"},"content":{"rendered":"

We address the problem of enhancing model robustness through regularization. Specifically, we focus on methods that regularize the model posterior difference between clean and noisy inputs. Theoretically, we provide a connection of two recent methods, Jacobian Regularization and Virtual Adversarial Training, under this framework. Additionally, we generalize the posterior differential regularization to the family of $f$-divergences and characterize the overall regularization framework in terms of Jacobian matrix. Empirically, we systematically compare those regularizations and standard BERT training on a diverse set of tasks to provide a comprehensive profile of their effect on model in-domain and out-of-domain generalization. For both fully supervised and semi-supervised settings, our experiments show that regularizing the posterior differential with $f$-divergence can result in well-improved model robustness. In particular, with a proper $f$-divergence, a BERT-base model can achieve comparable generalization as its BERT-large counterpart for in-domain, adversarial and domain shift scenarios, indicating the great potential of the proposed framework for boosting model generalization for NLP models.<\/p>\n","protected":false},"excerpt":{"rendered":"

We address the problem of enhancing model robustness through regularization. Specifically, we focus on methods that regularize the model posterior difference between clean and noisy inputs. Theoretically, we provide a connection of two recent methods, Jacobian Regularization and Virtual Adversarial Training, under this framework. Additionally, we generalize the posterior differential regularization to the family of […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13556],"msr-publication-type":[193724],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246904,252856,246691,256204,246877,248719,246754],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-749905","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-artificial-intelligence","msr-locale-en_us","msr-field-of-study-algorithm","msr-field-of-study-boosting-machine-learning","msr-field-of-study-computer-science","msr-field-of-study-f-divergence","msr-field-of-study-jacobian-matrix-and-determinant","msr-field-of-study-regularization-mathematics","msr-field-of-study-robustness-computer-science"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-10-22","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"arXiv","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2010.12638","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Hao Cheng","user_id":39922,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Hao Cheng"},{"type":"user_nicename","value":"Xiaodong Liu","user_id":34877,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Xiaodong Liu"},{"type":"text","value":"Lis Pereira","user_id":0,"rest_url":false},{"type":"text","value":"Yaoliang Yu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Jianfeng Gao","user_id":32246,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Jianfeng Gao"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[740920],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"miscellaneous","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/749905"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/749905\/revisions"}],"predecessor-version":[{"id":749920,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/749905\/revisions\/749920"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=749905"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=749905"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=749905"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=749905"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=749905"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=749905"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=749905"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=749905"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=749905"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=749905"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=749905"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=749905"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=749905"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=749905"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=749905"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=749905"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}