{"id":750337,"date":"2021-06-01T20:35:35","date_gmt":"2021-06-02T03:35:35","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=750337"},"modified":"2021-07-19T09:54:04","modified_gmt":"2021-07-19T16:54:04","slug":"a-dataset-and-baselines-for-multilingual-reply-suggestion","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/a-dataset-and-baselines-for-multilingual-reply-suggestion\/","title":{"rendered":"A Dataset and Baselines for Multilingual Reply Suggestion"},"content":{"rendered":"

Reply suggestion models help users process emails and chats faster. Previous work only studies English reply suggestion. Instead, we present MRS, a multilingual reply suggestion dataset with ten languages. MRS can be used to compare two families of models: 1) retrieval models that select the reply from a fixed set and 2) generation models that produce the reply from scratch. Therefore, MRS complements existing cross-lingual generalization benchmarks that focus on classification and sequence labeling tasks. We build a generation model and a retrieval model as baselines for MRS. The two models have different strengths in the monolingual setting, and they require different strategies to generalize across languages. MRS is publicly available at https:\/\/github.com\/zhangmozhi\/mrs (opens in new tab)<\/span><\/a>.<\/p>\n","protected":false},"excerpt":{"rendered":"

Reply suggestion models help users process emails and chats faster. Previous work only studies English reply suggestion. Instead, we present MRS, a multilingual reply suggestion dataset with ten languages. MRS can be used to compare two families of models: 1) retrieval models that select the reply from a fixed set and 2) generation models that […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-750337","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"ACL 2021","msr_edition":"","msr_affiliation":"","msr_published_date":"2021-7-23","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2021\/06\/mrs_acl2021_zhang.pdf","id":"750346","title":"mrs_acl2021_zhang","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":750346,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2021\/06\/mrs_acl2021_zhang.pdf"}],"msr-author-ordering":[{"type":"text","value":"Mozhi Zhang","user_id":0,"rest_url":false},{"type":"text","value":"Wei Wang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Budhaditya Deb","user_id":36578,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Budhaditya Deb"},{"type":"user_nicename","value":"Guoqing Zheng","user_id":37941,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Guoqing Zheng"},{"type":"user_nicename","value":"Milad Shokouhi","user_id":32921,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Milad Shokouhi"},{"type":"user_nicename","value":"Ahmed H. Awadallah","user_id":31979,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ahmed H. Awadallah"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[740968],"msr_group":[392600],"msr_project":[],"publication":[],"video":[],"download":[773518],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/750337"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/750337\/revisions"}],"predecessor-version":[{"id":750352,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/750337\/revisions\/750352"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=750337"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=750337"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=750337"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=750337"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=750337"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=750337"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=750337"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=750337"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=750337"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=750337"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=750337"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=750337"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=750337"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=750337"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=750337"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=750337"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}