{"id":752071,"date":"2021-06-07T19:18:20","date_gmt":"2021-06-08T02:18:20","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=752071"},"modified":"2021-10-20T10:04:22","modified_gmt":"2021-10-20T17:04:22","slug":"ensemble-combination-between-different-time-segmentations","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/ensemble-combination-between-different-time-segmentations\/","title":{"rendered":"Ensemble Combination between Different Time Segmentations"},"content":{"rendered":"
Hypothesis-level combination between multiple models can often yield gains in speech recognition. However, all models in the ensemble are usually restricted to use the same audio segmentation times. This paper proposes to generalise hypothesis-level combination, allowing the use of different audio segmentation times between the models, by splitting and re-joining the hypothesised N-best lists in […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,243062,13545,13554],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[247753],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-752071","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-audio-acoustics","msr-research-area-human-language-technologies","msr-research-area-human-computer-interaction","msr-locale-en_us","msr-field-of-study-speech-recognition"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2021-6-6","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"IEEE","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/ieeexplore.ieee.org\/document\/9413819","label_id":"243109","label":0}],"msr_related_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2021\/06\/slides.no_video.pdf","id":"753793","title":"slides-no_video","label_id":"243115","label":0},{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2021\/06\/ICASSP_2021___Multi_pass_combination___poster.pdf","id":"753796","title":"icassp_2021___multi_pass_combination___poster","label_id":"243115","label":0}],"msr_attachments":[{"id":753796,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2021\/06\/ICASSP_2021___Multi_pass_combination___poster.pdf"},{"id":753793,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2021\/06\/slides.no_video.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Jeremy Wong","user_id":39796,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Jeremy Wong"},{"type":"user_nicename","value":"Dimitrios Dimitriadis","user_id":37521,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Dimitrios Dimitriadis"},{"type":"user_nicename","value":"Kenichi Kumatani","user_id":39321,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Kenichi Kumatani"},{"type":"text","value":"Yashesh Gaur","user_id":0,"rest_url":false},{"type":"text","value":"George Polovets","user_id":0,"rest_url":false},{"type":"text","value":"Partha Parthasarathy","user_id":0,"rest_url":false},{"type":"text","value":"Eric Sun","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Jinyu Li","user_id":32312,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Jinyu Li"},{"type":"user_nicename","value":"Yifan Gong","user_id":34994,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yifan Gong"}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[748330],"msr_group":[702211,756487],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/752071"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/752071\/revisions"}],"predecessor-version":[{"id":752074,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/752071\/revisions\/752074"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=752071"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=752071"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=752071"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=752071"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=752071"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=752071"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=752071"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=752071"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=752071"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=752071"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=752071"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=752071"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=752071"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=752071"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=752071"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=752071"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}