{"id":752782,"date":"2021-06-08T18:09:53","date_gmt":"2021-06-09T01:09:53","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=752782"},"modified":"2021-06-11T10:26:56","modified_gmt":"2021-06-11T17:26:56","slug":"machine-learning-at-the-network-edge-a-survey","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/machine-learning-at-the-network-edge-a-survey\/","title":{"rendered":"Machine Learning at the Network Edge: A Survey"},"content":{"rendered":"
Resource-constrained IoT devices, such as sensors and actuators, have become ubiquitous in recent years. This has led to the generation of large quantities of data in real-time, which is an appealing target for AI systems. However, deploying machine learning models on such end-devices is nearly impossible. A typical solution involves offloading data to external computing systems (such as cloud servers) for further processing but this worsens latency, leads to increased communication costs, and adds to privacy concerns. To address this issue, efforts have been made to place additional computing devices at the edge of the network, i.e close to the IoT devices where the data is generated. Deploying machine learning systems on such edge computing devices alleviates the above issues by allowing computations to be performed close to the data sources. This survey describes major research efforts where machine learning systems have been deployed at the edge of computer networks, focusing on the operational aspects including compression techniques, tools, frameworks, and hardware used in successful applications of intelligent edge systems.<\/p>\n","protected":false},"excerpt":{"rendered":"
Resource-constrained IoT devices, such as sensors and actuators, have become ubiquitous in recent years. This has led to the generation of large quantities of data in real-time, which is an appealing target for AI systems. However, deploying machine learning models on such end-devices is nearly impossible. A typical solution involves offloading data to external computing […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13547],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246694,246691,247546,256684,255004,246685],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-752782","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-systems-and-networking","msr-locale-en_us","msr-field-of-study-artificial-intelligence","msr-field-of-study-computer-science","msr-field-of-study-edge-computing","msr-field-of-study-edge-device","msr-field-of-study-internet-of-things","msr-field-of-study-machine-learning"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2019-7-30","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"ACM Computing Surveys","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"http:\/\/ui.adsabs.harvard.edu\/abs\/2019arXiv190800080S\/abstract","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/1908.00080","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"M. G. Sarwar Murshed","user_id":0,"rest_url":false},{"type":"text","value":"Christopher Murphy","user_id":0,"rest_url":false},{"type":"text","value":"Daqing Hou","user_id":0,"rest_url":false},{"type":"text","value":"Nazar Khan","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Ganesh Ananthanarayanan","user_id":31834,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ganesh Ananthanarayanan"},{"type":"text","value":"Faraz Hussain","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[715138],"msr_project":[382664,212082],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":{"projects":[{"ID":382664,"post_title":"Microsoft Rocket for Live Video Analytics","post_name":"live-video-analytics","post_type":"msr-project","post_date":"2017-05-15 08:28:48","post_modified":"2020-11-22 08:59:49","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/live-video-analytics\/","post_excerpt":"Project Rocket's goal is to democratize video analytics: build a system for real-time, low-cost, accurate analysis of live videos. This system will work across a geo-distributed hierarchy of intelligent edges and large clouds, with the ultimate goal of making it easy and affordable for anyone with a camera stream to benefit from video analytics.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/382664"}]}},{"ID":212082,"post_title":"Edge Computing","post_name":"edge-computing","post_type":"msr-project","post_date":"2020-02-23 16:44:03","post_modified":"2020-11-12 19:40:46","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/edge-computing\/","post_excerpt":"Industries ranging from manufacturing to healthcare are eager to develop real-time control systems that use machine learning and artificial intelligence to improve efficiencies and reduce cost. We are exploring this new computing paradigm by identifying and addressing emerging technology and business model challenges.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/212082"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/752782"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":3,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/752782\/revisions"}],"predecessor-version":[{"id":753943,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/752782\/revisions\/753943"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=752782"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=752782"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=752782"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=752782"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=752782"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=752782"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=752782"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=752782"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=752782"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=752782"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=752782"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=752782"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=752782"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=752782"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=752782"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=752782"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}