{"id":754768,"date":"2021-06-15T01:37:40","date_gmt":"2021-06-15T08:37:40","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=754768"},"modified":"2021-06-15T01:37:40","modified_gmt":"2021-06-15T08:37:40","slug":"adaptive-streaming-perception-using-deep-reinforcement-learning","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/adaptive-streaming-perception-using-deep-reinforcement-learning\/","title":{"rendered":"Adaptive Streaming Perception using Deep Reinforcement Learning"},"content":{"rendered":"

Executing computer vision models on streaming visual data, or streaming perception is an emerging problem, with applications in self-driving, embodied agents, and augmented\/virtual reality. The development of such systems is largely governed by the accuracy and latency of the processing pipeline. While past work has proposed numerous approximate execution frameworks, their decision functions solely focus on optimizing latency, accuracy, or energy, etc. This results in sub-optimum decisions, affecting the overall system performance. We argue that the streaming perception systems should holistically maximize the overall system performance (i.e., considering both accuracy and latency simultaneously). To this end, we describe a new approach based on deep reinforcement learning to learn these tradeoffs at runtime for streaming perception. This tradeoff optimization is formulated as a novel deep contextual bandit problem and we design a new reward function that holistically integrates latency and accuracy into a single metric. We show that our agent can learn a competitive policy across multiple decision dimensions, which outperforms state-of-the-art policies on public datasets.<\/p>\n","protected":false},"excerpt":{"rendered":"

Executing computer vision models on streaming visual data, or streaming perception is an emerging problem, with applications in self-driving, embodied agents, and augmented\/virtual reality. The development of such systems is largely governed by the accuracy and latency of the processing pipeline. While past work has proposed numerous approximate execution frameworks, their decision functions solely focus […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13547],"msr-publication-type":[193726],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-754768","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2021-6-10","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2106.05665","label_id":"252679","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Anurag Ghosh","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Akshay Nambi","user_id":38169,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Akshay Nambi"},{"type":"text","value":"Aditya Singh","user_id":0,"rest_url":false},{"type":"text","value":"Harish YVS","user_id":0,"rest_url":false},{"type":"text","value":"Tanuja Ganu","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199562],"msr_event":[],"msr_group":[144939],"msr_project":[320399],"publication":[],"video":[],"download":[],"msr_publication_type":"unpublished","related_content":{"projects":[{"ID":320399,"post_title":"HAMS: Harnessing AutoMobiles for Safety","post_name":"hams","post_type":"msr-project","post_date":"2016-11-12 07:23:49","post_modified":"2022-07-18 06:11:34","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/hams\/","post_excerpt":"In the Harnessing AutoMobiles for Safety (HAMS) project, we use low-cost sensing devices to construct a virtual harness for vehicles. The goal is to monitor the state of the driver and how the vehicle is being driven in the context of a road environment that the vehicle is in. We believe that effective monitoring leading to actionable feedback is key to promoting road safety.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/320399"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/754768"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/754768\/revisions"}],"predecessor-version":[{"id":754771,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/754768\/revisions\/754771"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=754768"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=754768"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=754768"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=754768"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=754768"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=754768"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=754768"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=754768"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=754768"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=754768"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=754768"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=754768"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=754768"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=754768"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=754768"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=754768"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}