{"id":772063,"date":"2021-09-06T20:47:14","date_gmt":"2021-09-07T03:47:14","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=772063"},"modified":"2021-09-06T20:47:14","modified_gmt":"2021-09-07T03:47:14","slug":"spider-a-multi-hop-millimeter-wave-network-for-live-video-analytics","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/spider-a-multi-hop-millimeter-wave-network-for-live-video-analytics\/","title":{"rendered":"Spider: A Multi-Hop Millimeter-Wave Network for Live Video Analytics"},"content":{"rendered":"
Massive video analytics systems, comprised of many densely deployed cameras and supporting edge servers, are driving innovation in many areas including smart retail stores and security monitoring. To support such systems the challenge lies in collecting video footage in a way that maximizes end-to-end application goals, and scales this performance as camera density increases to meet application needs. This paper presents Spider, a multi-hop, millimeter-wave (mmWave) wireless relay network design that meets these needs. To mitigate physical mmWave link blockage, Spider integrates a low-latency Wi-Fi control plane with a mmWave relay data plane, allowing agile re-routing around blockages. Spider proposes a novel video bit-rate allocation algorithm coupled with a scalable routing algorithm that works hand-in-hand toward the application-level objective of maximizing video analytics accuracy, rather than simply maximizing data throughput. Our experimental evaluation uses a combination of testbed deployment and trace-driven simulation and compares against both Wi-Fi and mmWave mesh schemes that operate without Spider\u2019s algorithms. Results show that Spider is able to sup-port camera densities up to 176% higher (gains of 2.76\u00d7) than the best-performing comparison scheme, allowing it alone to meet real-world camera density targets (4\u2013250 cameras\/1,000 sq. ft., depending on application). Further experiments demonstrate Spider\u2019s scalability in the presence of failures, with a 5.4\u2013100\u00d7 reduction in average failure recovery time.<\/p>\n","protected":false},"excerpt":{"rendered":"
Massive video analytics systems, comprised of many densely deployed cameras and supporting edge servers, are driving innovation in many areas including smart retail stores and security monitoring. To support such systems the challenge lies in collecting video footage in a way that maximizes end-to-end application goals, and scales this performance as camera density increases to […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-772063","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2021-12","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"ACM\/IEEE","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"http:\/\/acm-ieee-sec.org\/2021\/","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Zhuqi Li","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Yuanchao Shu","user_id":35079,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yuanchao Shu"},{"type":"user_nicename","value":"Ganesh Ananthanarayanan","user_id":31834,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ganesh Ananthanarayanan"},{"type":"guest","value":"longfei-shangguan","user_id":661269,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=longfei-shangguan"},{"type":"text","value":"Kyle Jamieson","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Victor Bahl","user_id":31167,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Victor Bahl"}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[799477],"msr_group":[144899,715138],"msr_project":[382664,212082],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":382664,"post_title":"Microsoft Rocket for Live Video Analytics","post_name":"live-video-analytics","post_type":"msr-project","post_date":"2017-05-15 08:28:48","post_modified":"2020-11-22 08:59:49","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/live-video-analytics\/","post_excerpt":"Project Rocket's goal is to democratize video analytics: build a system for real-time, low-cost, accurate analysis of live videos. This system will work across a geo-distributed hierarchy of intelligent edges and large clouds, with the ultimate goal of making it easy and affordable for anyone with a camera stream to benefit from video analytics.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/382664"}]}},{"ID":212082,"post_title":"Edge Computing","post_name":"edge-computing","post_type":"msr-project","post_date":"2020-02-23 16:44:03","post_modified":"2020-11-12 19:40:46","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/edge-computing\/","post_excerpt":"Industries ranging from manufacturing to healthcare are eager to develop real-time control systems that use machine learning and artificial intelligence to improve efficiencies and reduce cost. We are exploring this new computing paradigm by identifying and addressing emerging technology and business model challenges.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/212082"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/772063"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/772063\/revisions"}],"predecessor-version":[{"id":772066,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/772063\/revisions\/772066"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=772063"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=772063"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=772063"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=772063"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=772063"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=772063"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=772063"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=772063"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=772063"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=772063"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=772063"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=772063"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=772063"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=772063"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=772063"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=772063"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}