{"id":779731,"date":"2021-09-28T22:06:49","date_gmt":"2021-09-29T05:06:49","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=779731"},"modified":"2022-01-21T09:57:34","modified_gmt":"2022-01-21T17:57:34","slug":"chasing-sparsity-in-vision-transformers-an-end-to-end-exploration","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/chasing-sparsity-in-vision-transformers-an-end-to-end-exploration\/","title":{"rendered":"Chasing Sparsity in Vision Transformers: An End-to-End Exploration"},"content":{"rendered":"
Vision transformers (ViTs) have recently received explosive popularity, but their enormous model sizes and training costs remain daunting. Conventional posttraining pruning often incurs higher training budgets. In contrast, this paper aims to trim down both the training memory overhead and the inference complexity, without sacrificing the achievable accuracy. We launch and report the first-of-its-kind comprehensive exploration, on taking a unified approach of integrating sparsity in ViTs \u201cfrom end to end”. Specifically, instead of training full ViTs, we dynamically extract and train sparse subnetworks, while sticking to a fixed small parameter budget. Our approach jointly optimizes model parameters and explores connectivity throughout training, ending up with one sparse network as the final output. The approach is seamlessly extended from unstructured to structured sparsity, the latter by considering to guide the prune-and-grow of self-attention heads inside ViTs. For additional efficiency gains, we further co-explore data and architecture sparsity, by plugging in a novel learnable token selector to adaptively determine the currently most vital patches. Extensive results on ImageNet with diverse ViT backbones validate the effectiveness of our proposals which obtain significantly reduced computational cost and almost unimpaired generalization. Perhaps most surprisingly, we find that the proposed sparse (co-)training can even improve the ViT accuracy rather than compromising it, making sparsity a tantalizing \u201cfree lunch\u201d. For example, our sparsified DeiT-Small at (5%, 50%) sparsity for (data, architecture), improves 0.28% top-1 accuracy, and meanwhile enjoys 49.32% FLOPs and 4.40% running time savings<\/p>\n","protected":false},"excerpt":{"rendered":"
Vision transformers (ViTs) have recently received explosive popularity, but their enormous model sizes and training costs remain daunting. Conventional posttraining pruning often incurs higher training budgets. In contrast, this paper aims to trim down both the training memory overhead and the inference complexity, without sacrificing the achievable accuracy. We launch and report the first-of-its-kind comprehensive […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13562],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-779731","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-computer-vision","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2021-12-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2106.04533","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Tianlong Chen","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Yu Cheng","user_id":39663,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yu Cheng"},{"type":"user_nicename","value":"Zhe Gan","user_id":39693,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Zhe Gan"},{"type":"user_nicename","value":"Lu Yuan","user_id":32755,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Lu Yuan"},{"type":"text","value":"Lei Zhang","user_id":0,"rest_url":false},{"type":"text","value":"Zhangyang Wang","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[761314],"msr_group":[392600],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/779731"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/779731\/revisions"}],"predecessor-version":[{"id":779734,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/779731\/revisions\/779734"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=779731"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=779731"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=779731"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=779731"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=779731"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=779731"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=779731"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=779731"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=779731"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=779731"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=779731"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=779731"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=779731"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=779731"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=779731"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=779731"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}