{"id":782137,"date":"2021-10-06T06:19:18","date_gmt":"2021-10-06T13:19:18","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=782137"},"modified":"2021-10-06T06:19:18","modified_gmt":"2021-10-06T13:19:18","slug":"emerging-convolutions-for-generative-normalizing-flows","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/emerging-convolutions-for-generative-normalizing-flows\/","title":{"rendered":"Emerging Convolutions for Generative Normalizing Flows"},"content":{"rendered":"

Generative flows are attractive because they admit exact likelihood optimization and efficient image synthesis. Recently, Kingma & Dhariwal (2018) demonstrated with Glow that generative flows are capable of generating high quality images. We generalize the 1 x 1 convolutions proposed in Glow to invertible d x d convolutions, which are more flexible since they operate on both channel and spatial axes. We propose two methods to produce invertible convolutions that have receptive fields identical to standard convolutions: Emerging convolutions are obtained by chaining specific autoregressive convolutions, and periodic convolutions are decoupled in the frequency domain. Our experiments show that the flexibility of d x d convolutions significantly improves the performance of generative flow models on galaxy images, CIFAR10 and ImageNet.<\/p>\n","protected":false},"excerpt":{"rendered":"

Generative flows are attractive because they admit exact likelihood optimization and efficient image synthesis. Recently, Kingma & Dhariwal (2018) demonstrated with Glow that generative flows are capable of generating high quality images. We generalize the 1 x 1 convolutions proposed in Glow to invertible d x d convolutions, which are more flexible since they operate […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246904,256861,260281,246709,246691,257470,260278,246748,257377,257956],"msr-conference":[260284],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-782137","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us","msr-field-of-study-algorithm","msr-field-of-study-autoregressive-model","msr-field-of-study-chaining","msr-field-of-study-channel-digital-image","msr-field-of-study-computer-science","msr-field-of-study-flow-mathematics","msr-field-of-study-frequency-domain","msr-field-of-study-generative-grammar","msr-field-of-study-image-synthesis","msr-field-of-study-invertible-matrix"],"msr_publishername":"PMLR","msr_edition":"","msr_affiliation":"","msr_published_date":"2019-5-24","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":0,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"http:\/\/proceedings.mlr.press\/v97\/hoogeboom19a.html","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"http:\/\/proceedings.mlr.press\/v97\/hoogeboom19a\/hoogeboom19a.pdf","label_id":"243132","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"guest","value":"emiel-hoogeboom","user_id":782128,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=emiel-hoogeboom"},{"type":"user_nicename","value":"Rianne van den Berg","user_id":40852,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Rianne van den Berg"},{"type":"guest","value":"max-welling","user_id":782086,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=max-welling"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/782137","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/782137\/revisions"}],"predecessor-version":[{"id":782140,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/782137\/revisions\/782140"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=782137"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=782137"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=782137"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=782137"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=782137"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=782137"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=782137"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=782137"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=782137"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=782137"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=782137"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=782137"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=782137"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=782137"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=782137"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=782137"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}