{"id":787132,"date":"2021-10-21T15:13:12","date_gmt":"2021-10-21T22:13:12","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=787132"},"modified":"2021-10-21T15:13:12","modified_gmt":"2021-10-21T22:13:12","slug":"low-complexity-online-convolutional-beamforming","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/low-complexity-online-convolutional-beamforming\/","title":{"rendered":"Low complexity online convolutional beamforming"},"content":{"rendered":"

Convolutional beamformers integrate the multichannel linear prediction model into beamformers, which provide good performance and optimality for joint dereverberation and noise reduction tasks. While longer filters are required to model long reverberation times, the computational burden of current online solutions grows fast with the filter length and number of microphones. In this work, we propose a low complexity convolutional beamformer using a Kalman filter derived affine projection algorithm to solve the adaptive filtering problem. The proposed solution is several orders of magnitude less complex than comparable existing solutions while slightly outperforming them on the REVERB challenge dataset.<\/p>\n","protected":false},"excerpt":{"rendered":"

Convolutional beamformers integrate the multichannel linear prediction model into beamformers, which provide good performance and optimality for joint dereverberation and noise reduction tasks. While longer filters are required to model long reverberation times, the computational burden of current online solutions grows fast with the filter length and number of microphones. In this work, we propose […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[243062],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-787132","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-audio-acoustics","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2021-10","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"IEEE","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2021\/10\/convolutional_beamforming.pdf","id":"787141","title":"convolutional_beamforming","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":787141,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2021\/10\/convolutional_beamforming.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Sebastian Braun","user_id":37688,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Sebastian Braun"},{"type":"user_nicename","value":"Ivan Tashev","user_id":32127,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ivan Tashev"}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[144923],"msr_project":[488189],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":488189,"post_title":"Sound Capture and Speech Enhancement","post_name":"sound-capture-speech-enhancement","post_type":"msr-project","post_date":"2018-06-12 09:35:37","post_modified":"2022-04-08 12:58:58","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/sound-capture-speech-enhancement\/","post_excerpt":"The goal of device design is to overcome the device, room, and noise effects, ultimately producing a clean audio signal good enough for people and machines to understand.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/488189"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/787132"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/787132\/revisions"}],"predecessor-version":[{"id":787144,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/787132\/revisions\/787144"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=787132"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=787132"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=787132"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=787132"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=787132"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=787132"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=787132"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=787132"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=787132"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=787132"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=787132"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=787132"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=787132"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=787132"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=787132"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=787132"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}