{"id":802924,"date":"2021-12-07T19:53:12","date_gmt":"2021-12-08T03:53:12","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=802924"},"modified":"2021-12-22T07:21:50","modified_gmt":"2021-12-22T15:21:50","slug":"height-estimation-of-children-under-five-years-using-depth-images-2","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/height-estimation-of-children-under-five-years-using-depth-images-2\/","title":{"rendered":"Height Estimation of Children under Five Years using Depth Images."},"content":{"rendered":"

Malnutrition is a global health crisis and is the leading cause of death among children under five. Detecting malnutrition requires anthropometric measurements of weight, height, and middle-upper arm circumference. However, measuring them accurately is a challenge, especially in the global south, due to limited resources. In this work, we propose a CNN-based approach to estimate the height of standing children under five years from depth images collected using a smart-phone. According to the SMART Methodology Manual [5], the acceptable accuracy for height is less than 1.4 cm. On training our deep learning model on 87131 depth images, our model achieved an average mean absolute error of 1.64% on 57064 test images. For 70.3% test images, we estimated height accurately within the acceptable 1.4 cm range. Thus, our proposed solution can accurately detect stunting (low height-for-age) in standing children below five years of age.<\/p>\n","protected":false},"excerpt":{"rendered":"

Malnutrition is a global health crisis and is the leading cause of death among children under five. Detecting malnutrition requires anthropometric measurements of weight, height, and middle-upper arm circumference. However, measuring them accurately is a challenge, especially in the global south, due to limited resources. In this work, we propose a CNN-based approach to estimate […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13562],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[262504,262501,246691,257872,262498,262495,262492,258028,247327,262489],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-802924","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-computer-vision","msr-locale-en_us","msr-field-of-study-anthropometry","msr-field-of-study-circumference","msr-field-of-study-computer-science","msr-field-of-study-estimation","msr-field-of-study-global-south","msr-field-of-study-limited-resources","msr-field-of-study-mean-absolute-error","msr-field-of-study-range-statistics","msr-field-of-study-statistics","msr-field-of-study-under-five"],"msr_publishername":"IEEE","msr_edition":"","msr_affiliation":"","msr_published_date":"2021-5-4","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2105.01688","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"http:\/\/ui.adsabs.harvard.edu\/abs\/2021arXiv210501688T\/abstract","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/height-estimation-of-children-under-five-years-using-depth-images\/","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"guest","value":"anusua-trivedi","user_id":802873,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=anusua-trivedi"},{"type":"user_nicename","value":"Mohit Jain","user_id":38769,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Mohit Jain"},{"type":"guest","value":"nikhil-kumar-gupta-2","user_id":802876,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=nikhil-kumar-gupta-2"},{"type":"guest","value":"markus-hinsche-2","user_id":802879,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=markus-hinsche-2"},{"type":"guest","value":"prashant-singh-2","user_id":802882,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=prashant-singh-2"},{"type":"guest","value":"markus-matiaschek","user_id":802885,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=markus-matiaschek"},{"type":"guest","value":"tristan-behrens","user_id":802888,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=tristan-behrens"},{"type":"guest","value":"mirco-militeri-2","user_id":802891,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=mirco-militeri-2"},{"type":"guest","value":"cameron-birge-2","user_id":802894,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=cameron-birge-2"},{"type":"guest","value":"shivangi-kaushik","user_id":802897,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=shivangi-kaushik"},{"type":"guest","value":"archisman-mohapatra-2","user_id":802900,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=archisman-mohapatra-2"},{"type":"guest","value":"rita-chatterjee-2","user_id":802903,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=rita-chatterjee-2"},{"type":"guest","value":"rahul-dodhia-2","user_id":802906,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=rahul-dodhia-2"},{"type":"guest","value":"juan-lavista-ferres","user_id":802909,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=juan-lavista-ferres"},{"type":"user_nicename","value":"Juan M. Lavista Ferres","user_id":39552,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Juan M. Lavista Ferres"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[1014747,778522],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":1014747,"post_title":"Fundamental Rights - AI for Good","post_name":"fundamental-rights-ai-for-good","post_type":"msr-project","post_date":"2024-04-02 08:58:55","post_modified":"2024-09-19 09:50:54","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/fundamental-rights-ai-for-good\/","post_excerpt":"Microsoft is committed to strengthening communities and empowering the organizations that help them thrive. We have a responsibility to protect people\u2019s fundamental rights, and help all communities succeed.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/1014747"}]}},{"ID":778522,"post_title":"AI for Health","post_name":"ai-for-health","post_type":"msr-project","post_date":"2023-05-16 14:26:13","post_modified":"2024-10-14 15:42:21","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/ai-for-health\/","post_excerpt":"AI for Health is a philanthropic program launched by Microsoft, which aims to support nonprofits, researchers, and organizations working on global health challenges. The program provides access to artificial intelligence (AI) technology and expertise in three main areas: population health, imaging analytics, genomics & proteomics.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/778522"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/802924"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/802924\/revisions"}],"predecessor-version":[{"id":802927,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/802924\/revisions\/802927"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=802924"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=802924"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=802924"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=802924"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=802924"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=802924"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=802924"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=802924"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=802924"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=802924"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=802924"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=802924"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=802924"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=802924"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=802924"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=802924"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}