{"id":808498,"date":"2022-01-04T01:49:01","date_gmt":"2022-01-04T09:49:01","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=808498"},"modified":"2022-01-09T05:52:20","modified_gmt":"2022-01-09T13:52:20","slug":"multiple-kernels-for-object-detection-2","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/multiple-kernels-for-object-detection-2\/","title":{"rendered":"Multiple kernels for object detection"},"content":{"rendered":"

Our objective is to obtain a state-of-the art object category detector
\nby employing a state-of-the-art image classifier to search for the
\nobject in all possible image sub-windows. We use multiple kernel
\nlearning of Varma and Ray (ICCV 2007) to learn an optimal combination
\nof exponential chi-squared kernels, each of which captures a different
\nfeature channel. Our features include the distribution of edges, dense
\nand sparse visual words, and feature descriptors at different levels
\nof spatial organization.<\/p>\n

Such a powerful classifier cannot be tested on all image sub-windows
\nin a reasonable amount of time. Thus we propose a novel three-stage
\nclassifier, which combines linear, quasi-linear, and non-linear kernel
\nSVMs. We show that increasing the non-linearity of the kernels
\nincreases their discriminative power, at the cost of an increased
\ncomputational complexity. Our contributions include (i) showing that a
\nlinear classifier can be evaluated with a complexity proportional to
\nthe number of sub-windows (independent of the sub-window area and
\ndescriptor dimension); (ii) a comparison of three efficient methods of
\nproposing candidate regions (including the jumping window classifier
\nof~Chum and Zisserman (CVPR 2007) based on proposing windows from
\nscale invariant features); and (iii) introducing overlap-recall curves
\nas a mean to compare and optimize the performance of the intermediate
\npipeline stages.<\/p>\n

The method is evaluated on the PASCAL Visual Object Detection
\nChallenge, and exceeds the performances of previously published
\nmethods for most of the classes.<\/p>\n","protected":false},"excerpt":{"rendered":"

Our objective is to obtain a state-of-the art object category detector by employing a state-of-the-art image classifier to search for the object in all possible image sub-windows. We use multiple kernel learning of Varma and Ray (ICCV 2007) to learn an optimal combination of exponential chi-squared kernels, each of which captures a different feature channel. […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-808498","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2009-9-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"http:\/\/manikvarma.org\/pubs\/vedaldi09.pdf","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Andrea Vedaldi","user_id":0,"rest_url":false},{"type":"text","value":"Varun Gulshan","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Manik Varma","user_id":32791,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Manik Varma"},{"type":"text","value":"Andrew Zisserman","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144940],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/808498"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/808498\/revisions"}],"predecessor-version":[{"id":808501,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/808498\/revisions\/808501"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=808498"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=808498"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=808498"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=808498"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=808498"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=808498"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=808498"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=808498"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=808498"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=808498"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=808498"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=808498"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=808498"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=808498"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=808498"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=808498"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}