{"id":808822,"date":"2022-01-04T15:33:51","date_gmt":"2022-01-04T23:33:51","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=808822"},"modified":"2022-11-17T05:28:50","modified_gmt":"2022-11-17T13:28:50","slug":"detecting-cattle-and-elk-in-the-wild-from-space","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/detecting-cattle-and-elk-in-the-wild-from-space\/","title":{"rendered":"Detecting Cattle and Elk in the Wild from Space"},"content":{"rendered":"
Localizing and counting large ungulates — hoofed mammals like cows and elk — in very high-resolution satellite imagery is an important task for supporting ecological studies. Prior work has shown that this is feasible with deep learning based methods and sub-meter multi-spectral satellite imagery. We extend this line of work by proposing a baseline method, CowNet, that simultaneously estimates the number of animals in an image (counts), as well as predicts their location at a pixel level (localizes). We also propose an methodology for evaluating such models on counting and localization tasks across large scenes that takes the uncertainty of noisy labels and the information needed by stakeholders in ecological monitoring tasks into account. Finally, we benchmark our baseline method with state of the art vision methods for counting objects in scenes. We specifically test the temporal generalization of the resulting models over a large landscape in Point Reyes Seashore, CA. We find that the LC-FCN model performs the best and achieves an average precision between 0.56 and 0.61 and an average recall between 0.78 and 0.92 over three held out test scenes.<\/p>\n","protected":false},"excerpt":{"rendered":"
Localizing and counting large ungulates — hoofed mammals like cows and elk — in very high-resolution satellite imagery is an important task for supporting ecological studies. Prior work has shown that this is feasible with deep learning based methods and sub-meter multi-spectral satellite imagery. We extend this line of work by proposing a baseline method, […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13562,198583],"msr-publication-type":[193726],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-808822","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-computer-vision","msr-research-area-ecology-environment","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2021-6-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"KDD 2021 Fragile Earth Workshop","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/pdf\/2106.15448","label_id":"252679","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Caleb Robinson","user_id":39606,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Caleb Robinson"},{"type":"user_nicename","value":"Anthony Ortiz","user_id":39715,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Anthony Ortiz"},{"type":"text","value":"Lacey Hughey","user_id":0,"rest_url":false},{"type":"text","value":"Jared A Stabach","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Juan M. Lavista Ferres","user_id":39552,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Juan M. Lavista Ferres"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[696544],"msr_project":[1016418,812350,597754],"publication":[],"video":[],"download":[],"msr_publication_type":"unpublished","related_content":{"projects":[{"ID":1016418,"post_title":"Advance Sustainability - AI for Good","post_name":"advance-sustainability-ai-for-good","post_type":"msr-project","post_date":"2024-04-02 08:57:43","post_modified":"2024-10-14 15:56:57","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/advance-sustainability-ai-for-good\/","post_excerpt":"Climate change requires swift, collective action and technological innovation. We are committed to meeting our own goals while enabling others to do the same.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/1016418"}]}},{"ID":812350,"post_title":"Geospatial Machine Learning","post_name":"geospatial-machine-learning","post_type":"msr-project","post_date":"2022-02-24 10:03:45","post_modified":"2024-04-19 14:52:45","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/geospatial-machine-learning\/","post_excerpt":"We combine geospatial data with machine learning in collaboration with partners at universities, conservation agencies, and NGOs in projects that support disaster response, humanitarian action and conservation efforts.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/812350"}]}},{"ID":597754,"post_title":"Accelerating Biodiversity Surveys with AI","post_name":"accelerating-biodiversity-surveys","post_type":"msr-project","post_date":"2020-02-19 09:03:12","post_modified":"2022-03-21 15:32:01","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/accelerating-biodiversity-surveys\/","post_excerpt":"Biodiversity is declining across the globe at a catastrophic rate, as threats from human settlement expansion, illegal wildlife killing, and climate change place enormous pressure on wildlife populations. Conservation biologists are faced with the daunting \u2013 but urgent \u2013 task of surveying wildlife populations and making policy recommendations to governments and industry. What species need legal protection from hunting? A road needs to connect two cities; which route will have the least detrimental impact on…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/597754"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/808822"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/808822\/revisions"}],"predecessor-version":[{"id":808834,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/808822\/revisions\/808834"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=808822"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=808822"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=808822"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=808822"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=808822"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=808822"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=808822"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=808822"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=808822"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=808822"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=808822"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=808822"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=808822"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=808822"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=808822"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=808822"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}