{"id":810124,"date":"2022-01-07T13:48:06","date_gmt":"2022-01-07T21:48:06","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=810124"},"modified":"2022-01-07T13:48:06","modified_gmt":"2022-01-07T21:48:06","slug":"agatha-smart-contract-for-dnn-computation","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/agatha-smart-contract-for-dnn-computation\/","title":{"rendered":"Agatha: Smart Contract for DNN Computation"},"content":{"rendered":"

Smart contract is one of the core features of Ethereum and has inspired many blockchain descendants. Since its advent, the verification paradigm of smart contract has been improving toward high scalability. It shifts from the expensive on-chain verification to the orchestration of off-chain VM (virtual machine) execution and on-chain arbitration with the pinpoint protocol. The representative projects are TrueBit, Arbitrum, YODA, ACE, and Optimism. Inspired by visionaries in academia and industry, we consider the DNN computation to be promising but on the next level of complexity for the verification paradigm of smart contract. Unfortunately, even for the state-of-the-art verification paradigm, off-chain VM execution of DNN computation has an orders-of-magnitude slowdown compared to the native off-chain execution. To enable the native off-chain execution of verifiable DNN computation, we present Agatha system, which solves the significant challenges of misalignment and inconsistency: (1) Native DNN computation has a graph-based computation paradigm misaligned with previous VM-based execution and arbitration; (2) Native DNN computation may be inconsistent cross platforms which invalidates the verification paradigm. In response, we propose the graph-based pinpoint protocol (GPP) which enables the pinpoint protocol on computational graphs, and bridges the native off-chain execution and the contract arbitration. We also develop a technique named Cross-evaluator Consistent Execution (XCE), which guarantees cross-platform consistency and forms the correctness foundation of GPP. We showcase Agatha for the DNN computation of popular models (MobileNet, ResNet50 and VGG16) on Ethereum. Agatha achieves a negligible on-chain overhead, and an off-chain execution overhead of 3.0%, which represents an off-chain latency reduction of at least 602x compared to the state-of-the-art verification paradigm.<\/p>\n","protected":false},"excerpt":{"rendered":"

Smart contract is one of the core features of Ethereum and has inspired many blockchain descendants. Since its advent, the verification paradigm of smart contract has been improving toward high scalability. It shifts from the expensive on-chain verification to the orchestration of off-chain VM (virtual machine) execution and on-chain arbitration with the pinpoint protocol. The […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13558,13547],"msr-publication-type":[193724],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246691,256405,248737,246793,257803,257749,249241,262807,248704,254164],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-810124","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-security-privacy-cryptography","msr-research-area-systems-and-networking","msr-locale-en_us","msr-field-of-study-computer-science","msr-field-of-study-consistency-database-systems","msr-field-of-study-correctness","msr-field-of-study-distributed-computing","msr-field-of-study-overhead-computing","msr-field-of-study-protocol-object-oriented-programming","msr-field-of-study-scalability","msr-field-of-study-smart-contract","msr-field-of-study-verifiable-secret-sharing","msr-field-of-study-virtual-machine"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2021-5-10","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"arXiv","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2105.04919","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"guest","value":"zihan-zheng","user_id":810127,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=zihan-zheng"},{"type":"guest","value":"peichen-xie","user_id":810130,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=peichen-xie"},{"type":"user_nicename","value":"Xian Zhang","user_id":37869,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Xian Zhang"},{"type":"user_nicename","value":"Shuo Chen","user_id":33637,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Shuo Chen"},{"type":"user_nicename","value":"Yang Chen","user_id":34949,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yang Chen"},{"type":"guest","value":"xiaobing-guo","user_id":810136,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=xiaobing-guo"},{"type":"guest","value":"guangzhong-sun","user_id":810139,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=guangzhong-sun"},{"type":"guest","value":"guangyu-sun","user_id":810142,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=guangyu-sun"},{"type":"user_nicename","value":"Lidong Zhou","user_id":32673,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Lidong Zhou"}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"miscellaneous","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/810124"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/810124\/revisions"}],"predecessor-version":[{"id":810148,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/810124\/revisions\/810148"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=810124"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=810124"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=810124"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=810124"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=810124"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=810124"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=810124"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=810124"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=810124"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=810124"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=810124"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=810124"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=810124"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=810124"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=810124"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=810124"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}