{"id":810712,"date":"2022-01-10T16:34:14","date_gmt":"2022-01-11T00:34:14","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=810712"},"modified":"2022-01-14T09:49:23","modified_gmt":"2022-01-14T17:49:23","slug":"crowdsourcing-approach-for-subjective-evaluation-of-echo-impairment","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/crowdsourcing-approach-for-subjective-evaluation-of-echo-impairment\/","title":{"rendered":"Crowdsourcing Approach for Subjective Evaluation of Echo Impairment"},"content":{"rendered":"

The quality of acoustic echo cancellers (AECs) in real-time communication systems is typically evaluated using objective metrics like ERLE [1] and PESQ [2], and less commonly with lab-based subjective tests like ITU-T Rec. P.831 [3]. We will show that these objective measures are not well correlated to subjective measures. We then introduce an open-source crowdsourcing approach for subjective evaluation of echo impairment which can be used to evaluate the performance of AECs. We provide a study that shows this tool is highly reproducible. This new tool has been recently used in the ICASSP 2021 AEC Challenge [4] which made the challenge possible to do quickly and cost effectively.<\/p>\n","protected":false},"excerpt":{"rendered":"

The quality of acoustic echo cancellers (AECs) in real-time communication systems is typically evaluated using objective metrics like ERLE [1] and PESQ [2], and less commonly with lab-based subjective tests like ITU-T Rec. P.831 [3]. We will show that these objective measures are not well correlated to subjective measures. We then introduce an open-source crowdsourcing […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[243062],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[262861,246691,252901,262846,262843,255934,247678,247753],"msr-conference":[259657],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-810712","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-audio-acoustics","msr-locale-en_us","msr-field-of-study-communications-system","msr-field-of-study-computer-science","msr-field-of-study-crowdsourcing","msr-field-of-study-echo-computing","msr-field-of-study-pesq","msr-field-of-study-quality-business","msr-field-of-study-signal-processing","msr-field-of-study-speech-recognition"],"msr_publishername":"IEEE","msr_edition":"","msr_affiliation":"","msr_published_date":"2021-6-5","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"10.1109\/ICASSP39728.2021.9414904","label_id":"243106","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2010.13063","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Ross Cutler","user_id":40660,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ross Cutler"},{"type":"guest","value":"babak-nadari","user_id":810715,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=babak-nadari"},{"type":"guest","value":"markus-loide","user_id":810700,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=markus-loide"},{"type":"guest","value":"sten-sootla","user_id":810718,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=sten-sootla"},{"type":"user_nicename","value":"Ando Saabas","user_id":39802,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ando Saabas"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[748330],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/810712"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/810712\/revisions"}],"predecessor-version":[{"id":810721,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/810712\/revisions\/810721"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=810712"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=810712"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=810712"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=810712"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=810712"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=810712"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=810712"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=810712"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=810712"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=810712"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=810712"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=810712"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=810712"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=810712"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=810712"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=810712"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}