{"id":812026,"date":"2022-01-14T02:05:49","date_gmt":"2022-01-14T10:05:49","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=812026"},"modified":"2022-01-14T02:05:49","modified_gmt":"2022-01-14T10:05:49","slug":"gcm-a-toolkit-for-generating-synthetic-code-mixed-text","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/gcm-a-toolkit-for-generating-synthetic-code-mixed-text\/","title":{"rendered":"GCM: A Toolkit for Generating Synthetic Code-mixed Text"},"content":{"rendered":"
Code-mixing is common in multilingual communities around the world, and processing it is challenging due to the lack of labeled and unlabeled data. We describe a tool that can automatically generate code-mixed data given parallel data in two languages. We implement two linguistic theories of code-mixing, the Equivalence Constraint theory and the Matrix Language theory to generate all possible code-mixed sentences in the language-pair, followed by sampling of the generated data to generate natural code-mixed sentences. The toolkit provides three modes: a batch mode, an interactive library mode and a web-interface to address the needs of researchers, linguists and language experts. The toolkit can be used to generate unlabeled text data for pre-trained models, as well as visualize linguistic theories of code-mixing. We plan to release the toolkit as open source and extend it by adding more implementations of linguistic theories, visualization techniques and better sampling techniques. We expect that the release of this toolkit will help facilitate more research in code-mixing in diverse language pairs.<\/p>\n","protected":false},"excerpt":{"rendered":"
Code-mixing is common in multilingual communities around the world, and processing it is challenging due to the lack of labeled and unlabeled data. We describe a tool that can automatically generate code-mixed data given parallel data in two languages. We implement two linguistic theories of code-mixing, the Equivalence Constraint theory and the Matrix Language theory […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246694,262951,249193,246691,262948,252043,261790,246808,262945,258994,246745],"msr-conference":[262954],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-812026","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-human-language-technologies","msr-locale-en_us","msr-field-of-study-artificial-intelligence","msr-field-of-study-batch-processing","msr-field-of-study-code-cryptography","msr-field-of-study-computer-science","msr-field-of-study-creative-visualization","msr-field-of-study-implementation","msr-field-of-study-mode-computer-interface","msr-field-of-study-natural-language-processing","msr-field-of-study-philosophy-of-language","msr-field-of-study-plan-drawing","msr-field-of-study-sampling-statistics"],"msr_publishername":"Association for Computational Linguistics","msr_edition":"","msr_affiliation":"","msr_published_date":"2021-4-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"10.18653\/V1\/2021.EACL-DEMOS.24","label_id":"243106","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/aclanthology.org\/2021.eacl-demos.24\/","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.aclweb.org\/anthology\/2021.eacl-demos.24\/","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"guest","value":"mohd-sanad-zaki-rizvi","user_id":812029,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=mohd-sanad-zaki-rizvi"},{"type":"guest","value":"anirudh-srinivasan","user_id":812032,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=anirudh-srinivasan"},{"type":"user_nicename","value":"Tanuja Ganu","user_id":38883,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Tanuja Ganu"},{"type":"user_nicename","value":"Monojit Choudhury","user_id":32996,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Monojit Choudhury"},{"type":"user_nicename","value":"Sunayana Sitaram","user_id":37287,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Sunayana Sitaram"}],"msr_impact_theme":[],"msr_research_lab":[199562],"msr_event":[],"msr_group":[144940],"msr_project":[248216],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":248216,"post_title":"Project Melange","post_name":"melange","post_type":"msr-project","post_date":"2016-07-04 04:02:18","post_modified":"2022-04-29 10:24:28","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/melange\/","post_excerpt":"The goal of Project M\u00e9lange is to understand the uses of and build tools around code-mixing, analyze and understand code-switching behavior, and equip speech and language processing systems with the capabilities of processing, understanding and generating code-switched language.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/248216"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/812026"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/812026\/revisions"}],"predecessor-version":[{"id":812035,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/812026\/revisions\/812035"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=812026"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=812026"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=812026"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=812026"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=812026"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=812026"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=812026"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=812026"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=812026"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=812026"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=812026"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=812026"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=812026"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=812026"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=812026"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=812026"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}