{"id":817771,"date":"2022-02-02T14:19:57","date_gmt":"2022-02-02T22:19:57","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=817771"},"modified":"2022-10-06T13:21:57","modified_gmt":"2022-10-06T20:21:57","slug":"unsupervised-summarization-with-customized-granularities","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/unsupervised-summarization-with-customized-granularities\/","title":{"rendered":"Unsupervised Summarization with Customized Granularities"},"content":{"rendered":"
Text summarization is a personalized and customized task, i.e., for one document, users often have different preferences for the summary. As a key aspect of customization in summarization, granularity is used to measure the semantic coverage between summary and source document. Coarse-grained summaries can only contain the most central event in the original text, while fine-grained summaries cover more sub-events and corresponding details. However, previous studies mostly develop systems in the single-granularity scenario. And models that can generate summaries with customizable semantic coverage still remain an under-explored topic. In this paper, we propose the first unsupervised multi-granularity summarization framework, GranuSum. We take events as the basic semantic units of the source documents and propose to rank these events by their salience. We also develop a model to summarize input documents with given events as anchors and hints. By inputting different numbers of events, GranuSum is capable of producing multi-granular summaries in an unsupervised manner. Meanwhile, to evaluate multi-granularity summarization models, we annotate a new benchmark GranuDUC, in which we write multiple summaries of different granularities for each document cluster. Experimental results confirm the substantial superiority of GranuSum on multi-granularity summarization over several baseline systems. Furthermore, by experimenting on conventional unsupervised abstractive summarization tasks, we find that GranuSum, by exploiting the event information, can also achieve new state-of-the-art results under this scenario, outperforming strong baselines.<\/p>\n","protected":false},"excerpt":{"rendered":"
Text summarization is a personalized and customized task, i.e., for one document, users often have different preferences for the summary. As a key aspect of customization in summarization, granularity is used to measure the semantic coverage between summary and source document. Coarse-grained summaries can only contain the most central event in the original text, while […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246808,249112],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-817771","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-human-language-technologies","msr-locale-en_us","msr-field-of-study-natural-language-processing","msr-field-of-study-text-summarization"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2022-12-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2022\/02\/2201.12502.pdf","id":"817774","title":"2201-12502","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":817774,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2022\/02\/2201.12502.pdf"}],"msr-author-ordering":[{"type":"text","value":"Ming Zhong","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Yang Liu","user_id":39594,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yang Liu"},{"type":"text","value":"Yuning Mao","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Yichong Xu","user_id":40279,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yichong Xu"},{"type":"text","value":"Suyu Ge","user_id":0,"rest_url":false},{"type":"text","value":"Yizhu Jiao","user_id":0,"rest_url":false},{"type":"text","value":"Xingxing Zhang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Chenguang Zhu","user_id":35600,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Chenguang Zhu"},{"type":"user_nicename","value":"Michael Zeng","user_id":33141,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Michael Zeng"},{"type":"text","value":"Jiawei Han","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[664548,741481],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/817771"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/817771\/revisions"}],"predecessor-version":[{"id":817777,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/817771\/revisions\/817777"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=817771"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=817771"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=817771"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=817771"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=817771"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=817771"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=817771"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=817771"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=817771"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=817771"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=817771"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=817771"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=817771"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=817771"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=817771"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=817771"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}