{"id":821650,"date":"2022-02-23T07:00:05","date_gmt":"2022-02-23T15:00:05","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=821650"},"modified":"2022-02-23T07:02:48","modified_gmt":"2022-02-23T15:02:48","slug":"online-competitive-influence-maximization","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/online-competitive-influence-maximization\/","title":{"rendered":"Online Competitive Influence Maximization"},"content":{"rendered":"

Online influence maximization has attracted much attention as a way to maximize influence spread through a social network while learning the values of unknown network parameters. Most previous works focus on single-item diffusion. In this paper, we introduce a new Online Competitive Influence Maximization (OCIM) problem, where two competing items (e.g., products, news stories) propagate in the same network and influence probabilities on edges are unknown. We adopt a combinatorial multi-armed bandit (CMAB) framework for OCIM, but unlike the non-competitive setting, the important monotonicity property (influence spread increases when influence probabilities on edges increase) no longer holds due to the competitive nature of\u00a0 propagation, which brings a significant new challenge to the problem. We provide a nontrivial proof showing that the Triggering Probability Modulated (TPM) condition for CMAB still holds in OCIM, which is instrumental for our proposed algorithms OCIM-TS and OCIM-OFU to achieve sublinear Bayesian and frequentist regret, respectively. We also design an OCIM-ETC algorithm
\nthat requires less feedback and easier online computation, at the expense of a worse frequentist regret bound. Experimental evaluations demonstrate the effectiveness of our algorithms.<\/p>\n","protected":false},"excerpt":{"rendered":"

Online influence maximization has attracted much attention as a way to maximize influence spread through a social network while learning the values of unknown network parameters. Most previous works focus on single-item diffusion. In this paper, we introduce a new Online Competitive Influence Maximization (OCIM) problem, where two competing items (e.g., products, news stories) propagate […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-821650","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2022-3-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":0,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2022\/02\/aistats2022_ocim.pdf","id":"821653","title":"aistats2022_ocim","label_id":"243132","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":821653,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2022\/02\/aistats2022_ocim.pdf"}],"msr-author-ordering":[{"type":"text","value":"Jinhang Zuo","user_id":0,"rest_url":false},{"type":"text","value":"Xutong Liu","user_id":0,"rest_url":false},{"type":"text","value":"Carlee Joe-Wong","user_id":0,"rest_url":false},{"type":"text","value":"John C.S. Lui","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Wei Chen","user_id":34795,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Wei Chen"}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[821218],"msr_group":[802999],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/821650"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/821650\/revisions"}],"predecessor-version":[{"id":821656,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/821650\/revisions\/821656"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=821650"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=821650"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=821650"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=821650"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=821650"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=821650"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=821650"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=821650"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=821650"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=821650"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=821650"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=821650"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=821650"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=821650"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=821650"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=821650"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}