{"id":824569,"date":"2022-03-07T20:57:39","date_gmt":"2022-03-08T04:57:39","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=824569"},"modified":"2022-03-07T20:57:39","modified_gmt":"2022-03-08T04:57:39","slug":"hrnet-ai-on-edge-for-mask-detection-and-social-distancing-calculation","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/hrnet-ai-on-edge-for-mask-detection-and-social-distancing-calculation\/","title":{"rendered":"HRNET: AI-on-Edge for Mask Detection and Social Distancing Calculation"},"content":{"rendered":"

The purpose of the paper is to provide innovative emerging technology framework for community to combat epidemic situations. The paper proposes a unique outbreak response system framework based on artificial intelligence and edge computing for citizen centric services to help track and trace people eluding safety policies like mask detection and social distancing measure in public or workplace setup. The framework further provides implementation guideline in industrial setup as well for governance and contact tracing tasks. The adoption will thus lead in smart city planning and development focusing on citizen health systems contributing to improved quality of life. The conceptual framework presented is validated through quantitative data analysis via secondary data collection from researcher\u2019s public websites, GitHub repositories and renowned journals and further benchmarking were conducted for experimental results in Microsoft Azure cloud environment. The study includes selective AI models for benchmark analysis and were assessed on performance and accuracy in edge computing environment for large-scale societal setup. Overall YOLO model outperforms in object detection task and is faster enough for mask detection and HRNetV2 outperform semantic segmentation problem applied to solve social distancing task in AI-Edge inferencing environmental setup. The paper proposes new Edge-AI algorithm for building technology-oriented solutions for detecting mask in human movement and social distance. The paper enriches the technological advancement in artificial intelligence and edge computing applied to problems in society and healthcare systems. The framework further equips government agency, system providers to design and construct technology-oriented models in community setup to increase the quality of life using emerging technologies into smart urban environments.<\/p>\n","protected":false},"excerpt":{"rendered":"

The purpose of the paper is to provide innovative emerging technology framework for community to combat epidemic situations. The paper proposes a unique outbreak response system framework based on artificial intelligence and edge computing for citizen centric services to help track and trace people eluding safety policies like mask detection and social distancing measure in […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13562],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[263566],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-824569","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-computer-vision","msr-locale-en_us","msr-field-of-study-ai-for-good"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2022-2-10","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"SN Computer Science","msr_volume":"3","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"2","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"https:\/\/doi.org\/10.1007\/s42979-022-01023-1","label_id":"243106","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Kinshuk Sengupta","user_id":40873,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Kinshuk Sengupta"},{"type":"text","value":"Praveen Ranjan Srivastava","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/824569"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/824569\/revisions"}],"predecessor-version":[{"id":824572,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/824569\/revisions\/824572"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=824569"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=824569"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=824569"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=824569"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=824569"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=824569"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=824569"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=824569"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=824569"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=824569"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=824569"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=824569"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=824569"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=824569"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=824569"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=824569"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}