{"id":824788,"date":"2022-04-05T10:05:06","date_gmt":"2022-04-05T17:05:06","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=824788"},"modified":"2022-06-26T13:57:33","modified_gmt":"2022-06-26T20:57:33","slug":"gloria-graph-based-sharing-optimizer-for-event-trend-aggregation","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/gloria-graph-based-sharing-optimizer-for-event-trend-aggregation\/","title":{"rendered":"Gloria: Graph-based Sharing Optimizer for Event Trend Aggregation"},"content":{"rendered":"

Large workloads of event trend aggregation queries are widely deployed to derive high-level insights about current event trends in near real time. To speed-up the execution, we identify and leverage sharing opportunities from complex patterns with flat Kleene operators or even nested Kleene expressions. We propose Gloria, a graph-based sharing optimizer for event trend aggregation. First, we map the sharing optimization problem to a graph path search problem in the Gloria graph with execution costs encoded as weights. Second, we shrink the search space by applying cost-driven pruning principles that guarantee optimality of the reduced Gloria graph in most cases. Lastly, we propose a path search algorithm that identifies the sharing plan with minimum execution costs. Our experimental study on three real-world data sets demonstrates that our Gloria optimizer effectively reduces the search space, leading to 5-fold speed-up in optimization time. The optimized plan consistently reduces the query latency by 68%-93% compared to the plan generated by state-of-the-art approaches.<\/p>\n","protected":false},"excerpt":{"rendered":"

Large workloads of event trend aggregation queries are widely deployed to derive high-level insights about current event trends in near real time. To speed-up the execution, we identify and leverage sharing opportunities from complex patterns with flat Kleene operators or even nested Kleene expressions. We propose Gloria, a graph-based sharing optimizer for event trend aggregation. […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13563],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[252862],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-824788","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-data-platform-analytics","msr-locale-en_us","msr-field-of-study-stream-processing"],"msr_publishername":"ACM","msr_edition":"","msr_affiliation":"","msr_published_date":"2022-3-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":0,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"10.1145\/3514221.3526145","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Lei Ma","user_id":0,"rest_url":false},{"type":"text","value":"Chuan Lei","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Olga Poppe","user_id":40054,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Olga Poppe"},{"type":"text","value":"Elke A. Rundensteiner","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[],"msr_project":[724732],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":724732,"post_title":"Event Trend Analytics","post_name":"greta","post_type":"msr-project","post_date":"2021-02-09 12:44:42","post_modified":"2024-03-27 14:11:44","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/greta\/","post_excerpt":"Advances in hardware, software and communication networks have enabled applications to generate data at unprecedented volume and velocity. An important type of this data are event streams generated from financial transactions, health sensors, web logs, social media, mobile devices, and vehicles. The world is thus poised for a sea-change in time-critical applications from financial fraud detection to health care analytics empowered by inferring insights from event streams in real time. Event processing systems continuously evaluate…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/724732"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/824788","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/824788\/revisions"}],"predecessor-version":[{"id":824791,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/824788\/revisions\/824791"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=824788"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=824788"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=824788"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=824788"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=824788"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=824788"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=824788"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=824788"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=824788"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=824788"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=824788"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=824788"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=824788"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=824788"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=824788"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=824788"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}