{"id":825166,"date":"2022-03-09T19:01:38","date_gmt":"2022-03-10T03:01:38","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=825166"},"modified":"2022-03-09T19:01:38","modified_gmt":"2022-03-10T03:01:38","slug":"task-grasping-from-human-demonstration","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/task-grasping-from-human-demonstration\/","title":{"rendered":"Task-grasping from human demonstration"},"content":{"rendered":"
A challenge in robot grasping is to achieve task-grasping which is to select a grasp that is advantageous to the success of tasks before and after grasps. One of the frameworks to address this difficulty is Learning-from-Observation (LfO), which obtains various hints from human demonstrations. This paper solves three issues in the grasping skills in the LfO framework: 1) how to functionally mimic human-demonstrated grasps to robots with limited grasp capability, 2) how to coordinate grasp skills with reaching body mimicking, 3) how to robustly perform grasps under object pose and shape uncertainty. A deep reinforcement learning using contact-web based rewards and domain randomization of approach directions is proposed to achieve such robust mimicked grasping skills. Experiment results show that the trained grasping skills can be applied in an LfO system and executed on a real robot. In addition, it is shown that the trained skill is robust to errors in the object pose and to the uncertainty of the object shape and can be combined with various reach-coordination.<\/p>\n","protected":false},"excerpt":{"rendered":"
A challenge in robot grasping is to achieve task-grasping which is to select a grasp that is advantageous to the success of tasks before and after grasps. One of the frameworks to address this difficulty is Learning-from-Observation (LfO), which obtains various hints from human demonstrations. This paper solves three issues in the grasping skills in […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13562,13554],"msr-publication-type":[193726],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-825166","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-computer-vision","msr-research-area-human-computer-interaction","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2022-3-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2203.00733","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"guest","value":"daichi-saito","user_id":821716,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=daichi-saito"},{"type":"guest","value":"kazuhiro-sasabuchi","user_id":821605,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=kazuhiro-sasabuchi"},{"type":"user_nicename","value":"Naoki Wake","user_id":39916,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Naoki Wake"},{"type":"guest","value":"jun-takamatsu","user_id":821608,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=jun-takamatsu"},{"type":"guest","value":"hideki-koike","user_id":821719,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=hideki-koike"},{"type":"user_nicename","value":"Katsushi Ikeuchi","user_id":32500,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Katsushi Ikeuchi"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[821527],"publication":[],"video":[],"download":[],"msr_publication_type":"unpublished","related_content":{"projects":[{"ID":821527,"post_title":"Interactive Learning-from-Observation","post_name":"interactive-learning-from-observation","post_type":"msr-project","post_date":"2022-02-24 20:57:14","post_modified":"2024-03-19 15:24:14","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/interactive-learning-from-observation\/","post_excerpt":"Service-robot solutions to empower senior citizens \u200b to achieve more and to enhance their lives The goal of this project is to develop an interactive learning-from-observation (LfO) system in the service-robot domain so as to empower senior citizens to achieve more and enhance their lives. Currently, many seniors in assisted living facilities would have preferred to remain at their homes. If we can use service robots to assist them, they can stay at home, conduct…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/821527"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/825166"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/825166\/revisions"}],"predecessor-version":[{"id":825169,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/825166\/revisions\/825169"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=825166"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=825166"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=825166"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=825166"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=825166"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=825166"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=825166"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=825166"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=825166"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=825166"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=825166"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=825166"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=825166"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=825166"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=825166"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=825166"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}