{"id":832549,"date":"2022-04-04T20:31:31","date_gmt":"2022-04-05T03:31:31","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=832549"},"modified":"2022-08-04T00:29:04","modified_gmt":"2022-08-04T07:29:04","slug":"recursive-disentanglement-network","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/recursive-disentanglement-network\/","title":{"rendered":"Recursive Disentanglement Network"},"content":{"rendered":"
Disentangled feature representation is essential for data-efficient learning. The feature space of deep models is inherently compositional. Existing\u00a0