{"id":836353,"date":"2022-04-18T21:57:41","date_gmt":"2022-04-19T04:57:41","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=836353"},"modified":"2022-04-18T21:57:41","modified_gmt":"2022-04-19T04:57:41","slug":"pivot-based-candidate-retrieval-for-cross-lingual-entity-linking","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/pivot-based-candidate-retrieval-for-cross-lingual-entity-linking\/","title":{"rendered":"Pivot-Based Candidate Retrieval for Cross-lingual Entity Linking"},"content":{"rendered":"
Entity candidate retrieval plays a critical role in cross-lingual entity linking (XEL). In XEL, entity candidate retrieval needs to retrieve a list of plausible candidate entities from a large knowledge graph in a target language given a piece of text in a sentence or question, namely a mention, in a source language. Existing works mainly fall into two categories: lexicon-based and semantic-based approaches. The lexicon-based approach usually creates cross-lingual and mention-entity lexicons, which is effective but relies heavily on bilingual resources (e.g. inter-language links in Wikipedia). The semantic-based approach maps mentions and entities in different languages to a unified embedding space, which reduces dependence on large-scale bilingual dictionaries. However, its effectiveness is limited by the representation capacity of fixed-length vectors. In this paper, we propose a pivot-based approach which inherits the advantages of the aforementioned two approaches while avoiding their limitations. It takes an intermediary set of plausible target-language mentions as pivots to bridge the two types of gaps: cross-lingual gap and mention-entity gap. Specifically, it first converts mentions in the source language into an intermediary set of plausible mentions in the target language by cross-lingual semantic retrieval and a selective mechanism, and then retrieves candidate entities based on the generated mentions by lexical retrieval. The proposed approach only relies on a small bilingual word dictionary, and fully exploits the benefits of both lexical and semantic matching. Experimental results on two challenging cross-lingual entity linking datasets spanning over 11 languages show that the pivot-based approach outperforms both the lexicon-based and semantic-based approach by a large margin.<\/p>\n","protected":false},"excerpt":{"rendered":"
Entity candidate retrieval plays a critical role in cross-lingual entity linking (XEL). In XEL, entity candidate retrieval needs to retrieve a list of plausible candidate entities from a large knowledge graph in a target language given a piece of text in a sentence or question, namely a mention, in a source language. Existing works mainly […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[261638],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-836353","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2021-6","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/dl.acm.org\/doi\/abs\/10.1145\/3442381.3449852","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Qian Liu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Xiubo Geng","user_id":39075,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Xiubo Geng"},{"type":"text","value":"Jie Lu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Daxin Jiang (\u59dc\u5927\u6615)","user_id":31642,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Daxin Jiang (\u59dc\u5927\u6615)"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[835921],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/836353"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/836353\/revisions"}],"predecessor-version":[{"id":836356,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/836353\/revisions\/836356"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=836353"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=836353"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=836353"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=836353"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=836353"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=836353"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=836353"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=836353"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=836353"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=836353"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=836353"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=836353"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=836353"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=836353"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=836353"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=836353"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}