{"id":838957,"date":"2022-04-25T03:06:07","date_gmt":"2022-04-25T10:06:07","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=838957"},"modified":"2022-04-25T03:06:07","modified_gmt":"2022-04-25T10:06:07","slug":"secfloat-accurate-floating-point-meets-secure-2-party-computation","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/secfloat-accurate-floating-point-meets-secure-2-party-computation\/","title":{"rendered":"SECFLOAT: Accurate Floating-Point meets Secure 2-Party Computation"},"content":{"rendered":"
We build a library \\tool for secure 2-party computation (2PC) of 32-bit single-precision floating-point operations and math functions. The existing functionalities used in cryptographic works are imprecise and the precise functionalities used in standard libraries are not crypto-friendly, i.e., they use operations that are cheap on CPUs but have exorbitant cost in 2PC. SecFloat bridges this gap with its novel crypto-friendly precise functionalities. Compared to the prior cryptographic libraries, SecFloat is up to six orders of magnitude more precise and up to two orders of magnitude more efficient. Furthermore, against a precise 2PC baseline, SecFloat is three orders of magnitude more efficient. The high precision of SecFloat leads to the first accurate implementation of secure inference. All prior works on secure inference of deep neural networks rely on ad hoc float-to-fixed converters. We evaluate a model where the fixed-point approximations used in privacy-preserving machine learning completely fail and floating-point is necessary. Thus, emphasizing the need for libraries like SecFloat.<\/p>\n","protected":false},"excerpt":{"rendered":"
We build a library \\tool for secure 2-party computation (2PC) of 32-bit single-precision floating-point operations and math functions. The existing functionalities used in cryptographic works are imprecise and the precise functionalities used in standard libraries are not crypto-friendly, i.e., they use operations that are cheap on CPUs but have exorbitant cost in 2PC. SecFloat bridges […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13558],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[248383,254197],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-838957","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-security-privacy-cryptography","msr-locale-en_us","msr-field-of-study-computer-security","msr-field-of-study-cryptography"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2022-5-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"IEEE","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2022\/04\/main-6266710a3c049.pdf","id":"838960","title":"main-6266710a3c049","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":838960,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2022\/04\/main-6266710a3c049.pdf"}],"msr-author-ordering":[{"type":"text","value":"Deevashwer Rathee","user_id":0,"rest_url":false},{"type":"text","value":"Anwesh Bhattacharya","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Rahul Sharma","user_id":36308,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Rahul Sharma"},{"type":"user_nicename","value":"Divya Gupta","user_id":37766,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Divya Gupta"},{"type":"user_nicename","value":"Nishanth Chandran","user_id":33084,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Nishanth Chandran"},{"type":"user_nicename","value":"Aseem Rastogi","user_id":36021,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Aseem Rastogi"}],"msr_impact_theme":[],"msr_research_lab":[199562],"msr_event":[],"msr_group":[761911,793670],"msr_project":[507611],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":507611,"post_title":"EzPC (Easy Secure Multi-party Computation)","post_name":"ezpc-easy-secure-multi-party-computation","post_type":"msr-project","post_date":"2018-10-10 01:30:32","post_modified":"2025-01-15 20:59:33","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/ezpc-easy-secure-multi-party-computation\/","post_excerpt":"Consider the following scenario: Two hospitals, each having sensitive patient data, must compute statistical information about their joint data. Or, one of the hospitals has a pre-trained ML model based on sensitive patient data and another hospital either wants to learn inference results for its sensitive patient data or the accuracy of the model for its sensitive patient data. In all cases, privacy regulations forbid them from sharing the data and\/or the model in the…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/507611"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/838957","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/838957\/revisions"}],"predecessor-version":[{"id":838966,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/838957\/revisions\/838966"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=838957"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=838957"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=838957"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=838957"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=838957"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=838957"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=838957"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=838957"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=838957"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=838957"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=838957"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=838957"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=838957"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=838957"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=838957"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=838957"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}