{"id":854748,"date":"2022-06-20T23:07:18","date_gmt":"2022-06-21T06:07:18","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/"},"modified":"2022-10-03T05:51:04","modified_gmt":"2022-10-03T12:51:04","slug":"linkingpark-an-automatic-semantic-table-interpretation-system","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/linkingpark-an-automatic-semantic-table-interpretation-system\/","title":{"rendered":"LinkingPark: An automatic semantic table interpretation system"},"content":{"rendered":"
In this paper, we present LinkingPark, an automatic semantic annotation system for tabular data to knowledge graph matching. LinkingPark is designed as a modular framework which can handle Cell-Entity Annotation (CEA), Column-Type Annotation (CTA), and Columns-Property Annotation (CPA) altogether. It is built upon our previous SemTab 2020 system, which won the 2nd prize among 28 different teams after four rounds of evaluations. Moreover, the system is unsupervised, stand-alone, and flexible for multilingual support. Its backend offers an efficient RESTful API for programmatic access, as well as an Excel Add-in for ease of use. Users can interact with LinkingPark in near real-time, further demonstrating its efficiency.<\/p>\n","protected":false},"excerpt":{"rendered":"
In this paper, we present LinkingPark, an automatic semantic annotation system for tabular data to knowledge graph matching. LinkingPark is designed as a modular framework which can handle Cell-Entity Annotation (CEA), Column-Type Annotation (CTA), and Columns-Property Annotation (CPA) altogether. It is built upon our previous SemTab 2020 system, which won the 2nd prize among 28 […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13563,13545],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246691],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-854748","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-data-platform-analytics","msr-research-area-human-language-technologies","msr-locale-en_us","msr-field-of-study-computer-science"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2022-6-16","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"Journal of Web Semantics","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"https:\/\/doi.org\/10.1016\/j.websem.2022.100733","label_id":"243106","label":0}],"msr_related_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2022\/06\/LinkingPark_2022-pre.pdf","id":"854751","title":"linkingpark_2022-pre","label_id":"243112","label":0}],"msr_attachments":[{"id":854751,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2022\/06\/LinkingPark_2022-pre.pdf"}],"msr-author-ordering":[{"type":"text","value":"Shuang Chen","user_id":0,"rest_url":false},{"type":"text","value":"Alperen Karaoglu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Carina Negreanu","user_id":40924,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Carina Negreanu"},{"type":"text","value":"Tingting Ma","user_id":0,"rest_url":false},{"type":"text","value":"Jin-Ge Yao","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Jack Williams","user_id":40156,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Jack Williams"},{"type":"text","value":"Feng Jiang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Andy Gordon","user_id":30825,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Andy Gordon"},{"type":"user_nicename","value":"Chin-Yew Lin","user_id":31493,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Chin-Yew Lin"}],"msr_impact_theme":[],"msr_research_lab":[199560,199561],"msr_event":[],"msr_group":[144919],"msr_project":[792599,511097,714646],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":{"projects":[{"ID":792599,"post_title":"Table Interpretation","post_name":"table-interpretation","post_type":"msr-project","post_date":"2021-11-05 02:02:36","post_modified":"2024-09-25 11:42:48","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/table-interpretation\/","post_excerpt":"Bringing out the power of semantics in tabular data Tables are commonly used to organize information, playing a key role in data analytics, scientific research, and business communication. The ability to automatically extract semantics in tables can empower many downstream applications such as data analytics, robotic process automation (RPA), knowledge base population, etc. In this project, we explore multiple aspects of semantic table understanding and real-world applications of such technologies. One of the outcomes of…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/792599"}]}},{"ID":511097,"post_title":"Calc Intelligence","post_name":"calc-intelligence","post_type":"msr-project","post_date":"2020-02-17 06:40:29","post_modified":"2023-11-27 06:33:39","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/calc-intelligence\/","post_excerpt":"By Calc Intelligence, we mean the research goal of bringing intelligence to end-user programming, and in particular to spreadsheets.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/511097"}]}},{"ID":714646,"post_title":"VERT: Versatile Entity Recognition & Disambiguation Toolkit","post_name":"vert-versatile-entity-recognition-disambiguation-toolkit","post_type":"msr-project","post_date":"2020-12-30 02:54:35","post_modified":"2021-10-13 21:15:01","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/vert-versatile-entity-recognition-disambiguation-toolkit\/","post_excerpt":"While knowledge about entities is a key building block in the mentioned systems, creating effective\/efficient models for real-world scenarios remains a challenge (tech\/data\/real workloads). Based on such needs, we've created VERT - a Versatile Entity Recognition & Disambiguation Toolkit. VERT is a pragmatic toolkit that combines rules and ML, offering both powerful pretrained models for core entity types (recognition and linking) and the easy creation of custom models. Custom models use our deep learning-based NER\/EL…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/714646"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/854748"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/854748\/revisions"}],"predecessor-version":[{"id":854754,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/854748\/revisions\/854754"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=854748"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=854748"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=854748"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=854748"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=854748"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=854748"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=854748"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=854748"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=854748"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=854748"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=854748"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=854748"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=854748"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=854748"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=854748"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=854748"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}