{"id":858267,"date":"2022-07-01T20:03:59","date_gmt":"2022-07-02T03:03:59","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/"},"modified":"2022-07-13T23:20:19","modified_gmt":"2022-07-14T06:20:19","slug":"sparta-deep-learning-model-sparsity-via-tensor-with-sparsity-attribute","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/sparta-deep-learning-model-sparsity-via-tensor-with-sparsity-attribute\/","title":{"rendered":"SparTA: Deep-Learning Model Sparsity via Tensor-with-Sparsity-Attribute"},"content":{"rendered":"

Sparsity is becoming arguably the most critical dimension to explore for efficiency and scalability, as deep learning models grow significantly larger and more complex. After all, the biological neural networks, where deep learning draws inspirations, are naturally sparse and highly efficient.<\/p>\n

We advocate an end-to-end approach to model sparsity via a new abstraction called Tensor-with-Sparsity-Attribute (TeSA), which augments the default Tensor abstraction that is fundamentally designed for dense models. TeSA enables the sparsity attributes and patterns (e.g., for pruning and quantization) to be specified, propagated forward and backward across the entire deep learning model, and used to create highly efficient, specialized operators, taking into account the execution efficiency of different sparsity patterns on different (sparsity-aware) hardware. The resulting SparTA framework can accommodate various sparsity patterns and optimization techniques, delivering 1.7x~8.4x average speedup on inference latency compared to seven state-of-the-art (sparse) solutions with smaller memory footprints. As an end-to-end model sparsity framework, SparTA facilitates sparsity algorithms to explore better sparse models.<\/p>\n","protected":false},"excerpt":{"rendered":"

Sparsity is becoming arguably the most critical dimension to explore for efficiency and scalability, as deep learning models grow significantly larger and more complex. After all, the biological neural networks, where deep learning draws inspirations, are naturally sparse and highly efficient. We advocate an end-to-end approach to model sparsity via a new abstraction called Tensor-with-Sparsity-Attribute […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[263953],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-858267","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2022-7-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.usenix.org\/conference\/osdi22\/presentation\/zheng-ningxin","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Alvin Zheng","user_id":40651,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Alvin Zheng"},{"type":"text","value":"Bin Lin","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Quanlu Zhang","user_id":36996,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Quanlu Zhang"},{"type":"user_nicename","value":"Lingxiao Ma","user_id":39769,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Lingxiao Ma"},{"type":"user_nicename","value":"Yuqing Yang","user_id":40654,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yuqing Yang"},{"type":"user_nicename","value":"Fan Yang","user_id":31782,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Fan Yang"},{"type":"text","value":"Yang Wang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Mao Yang","user_id":32798,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Mao Yang"},{"type":"user_nicename","value":"Lidong Zhou","user_id":32673,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Lidong Zhou"}],"msr_impact_theme":[],"msr_research_lab":[199560],"msr_event":[850342],"msr_group":[510017,815140,881388,920469,922377],"msr_project":[555282,507572],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":555282,"post_title":"Deep Learning Compiler and Optimizer","post_name":"deep-learning-compiler-and-optimizer","post_type":"msr-project","post_date":"2018-12-04 18:10:52","post_modified":"2023-07-10 03:41:13","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/deep-learning-compiler-and-optimizer\/","post_excerpt":"Project Overview This project aims to build a deep learning compiler and optimizer infrastructure that can provide automatic scalability and efficiency optimization for distributed and local execution.\u00a0 Overall, this stack covers two types of general optimizations: fast distributed training over large-scale servers and efficient local execution on various hardware devices.\u00a0 Currently, our optimizations focus on many different parts of the system stack, such as fast distributed training over RDMA, automatic computation placement across devices, automatic…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/555282"}]}},{"ID":507572,"post_title":"Neural Network Intelligence","post_name":"neural-network-intelligence","post_type":"msr-project","post_date":"2018-09-25 23:21:10","post_modified":"2021-06-28 12:48:51","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/neural-network-intelligence\/","post_excerpt":"NNI (Neural Network Intelligence) is a toolkit to help users run automated machine learning (AutoML) experiments. The tool dispatches and runs trial jobs generated by tuning algorithms to search the best neural architecture and\/or hyper-parameters in different environments like local machine, remote servers and cloud.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/507572"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/858267","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/858267\/revisions"}],"predecessor-version":[{"id":858270,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/858267\/revisions\/858270"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=858267"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=858267"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=858267"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=858267"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=858267"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=858267"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=858267"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=858267"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=858267"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=858267"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=858267"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=858267"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=858267"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=858267"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=858267"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=858267"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}