{"id":860589,"date":"2022-07-11T08:12:41","date_gmt":"2022-07-11T15:12:41","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/"},"modified":"2024-10-02T14:25:26","modified_gmt":"2024-10-02T21:25:26","slug":"opennetlab-apnet","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/opennetlab-apnet\/","title":{"rendered":"OpenNetLab: Open Platform for RL-based Congestion Control for Real-Time Communications"},"content":{"rendered":"

With the growing importance of real-time communications (RTC), designing congestion control (CC) algorithms for RTC that achieve high network performance and QoE is gaining attention. Recently, data-driven, reinforcement learning (RL)-based CC algorithms for RTC have shown great potential, outperforming traditional rule-based counterparts. However, there are no open platforms tailored for training, evaluation, and validation of the algorithms that can facilitate this emerging research area.<\/p>\n

We present OpenNetLab, an open platform for fast training, reproducible end-to-end evaluation, and performance validation of RL-based CC algorithms for RTC. Preliminary use cases confirm that OpenNetLab concretely aided the training of novel RL-based CC algorithms for RTC that outperform a well-established rule-based baseline in both network performance and QoE metrics.<\/p>\n","protected":false},"excerpt":{"rendered":"

With the growing importance of real-time communications (RTC), designing congestion control (CC) algorithms for RTC that achieve high network performance and QoE is gaining attention. Recently, data-driven, reinforcement learning (RL)-based CC algorithms for RTC have shown great potential, outperforming traditional rule-based counterparts. However, there are no open platforms tailored for training, evaluation, and validation of […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[246574],"research-area":[13556,13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[248227,246820],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-860589","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-highlight-award","msr-research-area-artificial-intelligence","msr-research-area-systems-and-networking","msr-locale-en_us","msr-field-of-study-computer-network","msr-field-of-study-reinforcement-learning"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2022-7-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"Best Paper Award","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/conferences.sigcomm.org\/events\/apnet2022\/papers\/OpenNetLab-%20Open%20Platform%20for%20RL-based%20Congestion%20Control%20for%20Real-Time%20Communications.pdf","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":860592,"url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-content\/uploads\/2022\/07\/fyy-opennetlab-apnet22.pdf"}],"msr-author-ordering":[{"type":"text","value":"Jeongyoon Eo","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Zhixiong Niu","user_id":38118,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Zhixiong Niu"},{"type":"text","value":"Wenxue Cheng","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Francis Y. Yan","user_id":39558,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Francis Y. Yan"},{"type":"user_nicename","value":"Rui Gao","user_id":33465,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Rui Gao"},{"type":"text","value":"Jorina Kardhashi","user_id":0,"rest_url":false},{"type":"text","value":"Scott Inglis","user_id":0,"rest_url":false},{"type":"text","value":"Michael Revow","user_id":0,"rest_url":false},{"type":"text","value":"Byung-Gon Chun","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Peng Cheng","user_id":33225,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Peng Cheng"},{"type":"user_nicename","value":"Yongqiang Xiong","user_id":35049,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yongqiang Xiong"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[442950],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/860589","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":4,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/860589\/revisions"}],"predecessor-version":[{"id":1034439,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/860589\/revisions\/1034439"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=860589"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=860589"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=860589"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=860589"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=860589"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=860589"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=860589"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=860589"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=860589"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=860589"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=860589"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=860589"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=860589"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=860589"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=860589"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=860589"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}