{"id":861648,"date":"2022-07-12T15:33:53","date_gmt":"2022-07-12T22:33:53","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/"},"modified":"2023-02-13T10:24:53","modified_gmt":"2023-02-13T18:24:53","slug":"covidseeker-a-geospatial-temporal-surveillance-tool","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/covidseeker-a-geospatial-temporal-surveillance-tool\/","title":{"rendered":"Covidseeker: A Geospatial Temporal Surveillance Tool"},"content":{"rendered":"
Introduction: Geospatial temporal data derived from smartphones traditionally used for purposes of navigation may offer valuable information for public health surveillance and locational hot spotting. Our objective was to develop a web-based application, called Covidseeker, that captures continuous fine-grained geospatial temporal data from smartphones and leverages these data to study transmission patterns of COVID-19. Methods: This report describes the development of Covidseeker and the process by which it utilizes geospatial temporal data from smartphones and processes it into a usable format to study geospatial temporal patterns of COVID-19. We provide an overview of the design process, the principles, the software architecture, and the dashboard of the Covidseeker application and consider key challenges and strategic uses of capturing geospatial temporal data and the potential for future applications in outbreak surveillance. Results: A resource such as Covidseeker can support situational awareness by providing information about the location and timing of transmission of diseases such as COVID-19. Geospatial temporal data housed in smartphones hold tremendous potential to capture more depth about where and when transmission occurs and the patterns of human mobility that lead to increases in risk of COVID-19. Conclusion: An enormous and highly rich source of geospatial temporal information about human mobility can be used to provide highly localized discrete information that is difficult to capture by traditional sources. The architecture of Covidseeker can be applied to help track COVID-19 and should be integrated with traditional disease surveillance practices<\/p>\n","protected":false},"excerpt":{"rendered":"
Introduction: Geospatial temporal data derived from smartphones traditionally used for purposes of navigation may offer valuable information for public health surveillance and locational hot spotting. Our objective was to develop a web-based application, called Covidseeker, that captures continuous fine-grained geospatial temporal data from smartphones and leverages these data to study transmission patterns of COVID-19. Methods: […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13553],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-861648","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-medical-health-genomics","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2022-1-27","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"International Journal of Environmental Research and Public Health","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.mdpi.com\/1660-4601\/19\/3\/1410","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Yulin Hswen","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Elad Yom-Tov","user_id":31729,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Elad Yom-Tov"},{"type":"text","value":"Vaidhy Murti","user_id":0,"rest_url":false},{"type":"text","value":"Nicholas Narsing","user_id":0,"rest_url":false},{"type":"text","value":"Siona Prasad","user_id":0,"rest_url":false},{"type":"text","value":"George W. Rutherford","user_id":0,"rest_url":false},{"type":"text","value":"Kirsten Bibbins-Domingo","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199563],"msr_event":[],"msr_group":[916890],"msr_project":[918231,375953],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":{"projects":[{"ID":918231,"post_title":"Forecasting & modeling","post_name":"forecasting-modeling","post_type":"msr-project","post_date":"2023-10-25 20:51:53","post_modified":"2023-10-25 20:51:56","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/forecasting-modeling\/","post_excerpt":"The ability to model and forecast disease transmission, behavior, risk factors, illness and mortality is important for making public health decisions and allocating resources that can help mitigate the impact of a pandemic. The modeling community around the world continues to develop and evolve their techniques, which can be challenging in the fact of uncertainty in many forms. The research here between researchers at Microsoft and collaborators around the world demonstrates innovative new methods for…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/918231"}]}},{"ID":375953,"post_title":"Internet-Mediated Health","post_name":"internet-mediated-health","post_type":"msr-project","post_date":"2012-08-01 05:15:47","post_modified":"2022-07-14 02:17:04","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/internet-mediated-health\/","post_excerpt":"The majority of Internet users turn to the web for information when they have a medical concern. The data generated while users seek such information, and more generally when they browse the Internet for work and pleasure, represent a potential boon for medical research. During the past decade these data have proven valuable where the most patient activity happens online, where internet data provides a more sensitive indicator than that attainable from traditional sources, and…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/375953"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/861648"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/861648\/revisions"}],"predecessor-version":[{"id":861651,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/861648\/revisions\/861651"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=861648"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=861648"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=861648"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=861648"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=861648"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=861648"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=861648"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=861648"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=861648"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=861648"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=861648"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=861648"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=861648"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=861648"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=861648"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=861648"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}