{"id":864957,"date":"2022-07-26T10:51:18","date_gmt":"2022-07-26T17:51:18","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/"},"modified":"2022-07-26T15:32:58","modified_gmt":"2022-07-26T22:32:58","slug":"supersolver-accelerating-the-delfs-galbraith-algorithm-with-fast-subfield-root-detection","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/supersolver-accelerating-the-delfs-galbraith-algorithm-with-fast-subfield-root-detection\/","title":{"rendered":"SuperSolver: accelerating the Delfs-Galbraith algorithm with fast subfield root detection"},"content":{"rendered":"
We give a new algorithm for finding an isogeny from any given supersingular elliptic curve to a subfield elliptic curve, which is the bottleneck step of the Delfs-Galbraith algorithm for the general supersingular isogeny problem. Our core ingredient is a novel method of rapidly determining whether a polynomial has any roots in a subfield, while crucially avoiding expensive root-finding algorithms. In the special case when this polynomial is the ell-th modular polynomial evaluated at a supersingular j-invariant, this provides a means of efficiently determining whether there is an ell-isogeny connecting the corresponding elliptic curve to a subfield curve. Together with the traditional Delfs-Galbraith walk, inspecting many ell-isogenous neighbours in this way allows us to search through a larger proportion of the supersingular set per unit of time. Though the asymptotic complexity of our improved algorithm remains unchanged from that of the original Delfs-Galbraith algorithm, our theoretical analysis and practical implementation both show a significant reduction in the runtime of the subfield search. This sheds new light on the concrete hardness of the general supersingular isogeny problem, the foundational problem underlying isogeny-based cryptography.<\/p>\n","protected":false},"excerpt":{"rendered":"
We give a new algorithm for finding an isogeny from any given supersingular elliptic curve to a subfield elliptic curve, which is the bottleneck step of the Delfs-Galbraith algorithm for the general supersingular isogeny problem. Our core ingredient is a novel method of rapidly determining whether a polynomial has any roots in a subfield, while […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13546,13558],"msr-publication-type":[193724],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246904,265317],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-864957","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-computational-sciences-mathematics","msr-research-area-security-privacy-cryptography","msr-locale-en_us","msr-field-of-study-algorithm","msr-field-of-study-root-chord"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-12-31","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"IACR","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/eprint.iacr.org\/2021\/1488.pdf","label_id":"243132","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/eprint.iacr.org\/2021\/1488","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"guest","value":"maria-corte-real-santos","user_id":864972,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=maria-corte-real-santos"},{"type":"user_nicename","value":"Craig Costello","user_id":31476,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Craig Costello"},{"type":"guest","value":"jia-shi","user_id":864975,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=jia-shi"}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"miscellaneous","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/864957"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":8,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/864957\/revisions"}],"predecessor-version":[{"id":865014,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/864957\/revisions\/865014"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=864957"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=864957"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=864957"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=864957"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=864957"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=864957"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=864957"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=864957"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=864957"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=864957"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=864957"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=864957"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=864957"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=864957"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=864957"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=864957"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}