{"id":874629,"date":"2022-09-01T17:57:30","date_gmt":"2022-09-02T00:57:30","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/"},"modified":"2022-09-02T08:35:20","modified_gmt":"2022-09-02T15:35:20","slug":"swiftpruner-reinforced-evolutionary-pruning-for-efficient-ad-relevance","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/swiftpruner-reinforced-evolutionary-pruning-for-efficient-ad-relevance\/","title":{"rendered":"SwiftPruner: Reinforced Evolutionary Pruning for Efficient Ad Relevance"},"content":{"rendered":"
Ad relevance modeling plays a critical role in online advertising systems including Microsoft Bing. To leverage powerful transformers like BERT in this low-latency setting, many existing approaches perform ad-side computations offline. While efficient, these approaches are unable to serve cold start ads, resulting in poor relevance predictions for such ads. This work aims to design a new, low-latency BERT via structured pruning to empower real-time online inference for cold start ads relevance on a CPU platform. Our challenge is that previous methods typically prune all layers of the transformer to a high, uniform sparsity, thereby producing models which cannot achieve satisfactory inference speed with an acceptable accuracy.<\/p>\n
In this paper, we propose SwiftPruner – an efficient framework that leverages evolution-based search to automatically find the best-performing layer-wise sparse BERT model under the desired latency constraint. Different from existing evolution algorithms that conduct random mutations, we propose a reinforced mutator with a latency-aware multi-objective reward to conduct better mutations for efficiently searching the large space of layer-wise sparse models. Extensive experiments demonstrate that our method consistently achieves higher ROC AUC and lower latency than the uniform sparse baseline and state-of-the-art search methods. Remarkably, under our latency requirement of 1900us on CPU, SwiftPruner achieves a 0.86% higher AUC than the state-of-the-art uniform sparse baseline for BERT-Mini on a large-scale real-world dataset. Online A\/B testing shows that our model also achieves a significant 11.7% cut in the ratio of defective cold start ads with satisfactory real-time serving latency.<\/p>\n","protected":false},"excerpt":{"rendered":"
Ad relevance modeling plays a critical role in online advertising systems including Microsoft Bing. To leverage powerful transformers like BERT in this low-latency setting, many existing approaches perform ad-side computations offline. While efficient, these approaches are unable to serve cold start ads, resulting in poor relevance predictions for such ads. This work aims to design […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-874629","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2022-10-17","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"https:\/\/doi.org\/10.1145\/3511808.3557139","label_id":"243109","label":0}],"msr_related_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2022\/09\/SwiftPruner_CIKM22.pdf","id":"874635","title":"swiftpruner_cikm22","label_id":"243118","label":0}],"msr_attachments":[{"id":874635,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2022\/09\/SwiftPruner_CIKM22.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Li Lyna Zhang","user_id":38121,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Li Lyna Zhang"},{"type":"text","value":"Youkow Homma","user_id":0,"rest_url":false},{"type":"text","value":"Yujing Wang","user_id":0,"rest_url":false},{"type":"text","value":"Min Wu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Mao Yang","user_id":32798,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Mao Yang"},{"type":"edited_text","value":"Ruofei Zhang","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Ting Cao","user_id":37446,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ting Cao"},{"type":"edited_text","value":"Wei Shen","user_id":35066,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Wei Shen"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[879075],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/874629"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":5,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/874629\/revisions"}],"predecessor-version":[{"id":874902,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/874629\/revisions\/874902"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=874629"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=874629"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=874629"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=874629"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=874629"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=874629"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=874629"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=874629"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=874629"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=874629"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=874629"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=874629"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=874629"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=874629"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=874629"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=874629"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}