{"id":881766,"date":"2022-09-28T18:05:46","date_gmt":"2022-09-29T01:05:46","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/"},"modified":"2024-05-17T07:26:47","modified_gmt":"2024-05-17T14:26:47","slug":"audio-retrieval-with-wavtext5k-and-clap-training","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/audio-retrieval-with-wavtext5k-and-clap-training\/","title":{"rendered":"Audio Retrieval with WavText5K and CLAP Training"},"content":{"rendered":"

Audio-Text retrieval takes a natural language query to retrieve relevant audio files in a database. Conversely, Text-Audio retrieval takes an audio file as a query to retrieve relevant natural language descriptions. Most of the literature train retrieval systems with one audio captioning dataset, but evaluating the benefit of training with multiple datasets is underexplored. Moreover, retrieval systems have to learn the alignment between elaborated sentences describing audio content of variable length ranging from a few seconds to several minutes. In this work, we propose a new collection of web audio-text pairs and a new framework for retrieval. First, we provide a new collection of about five thousand web audio-text pairs that we refer to as WavText5K. When used to train our retrieval system, WavText5K improved performance more than other audio captioning datasets. Second, our framework learns to connect language and audio content by using a text encoder, two audio encoders, and a contrastive learning objective. Combining both audio encoders helps to process variable length audio. The two contributions beat state of the art performance for AudioCaps and Clotho on Text-Audio retrieval by a relative 2% and 16%, and Audio-Text retrieval by 6% and 23%.<\/p><\/blockquote>\n

<\/div>\n","protected":false},"excerpt":{"rendered":"

Audio-Text retrieval takes a natural language query to retrieve relevant audio files in a database. Conversely, Text-Audio retrieval takes an audio file as a query to retrieve relevant natural language descriptions. Most of the literature train retrieval systems with one audio captioning dataset, but evaluating the benefit of training with multiple datasets is underexplored. Moreover, […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,243062],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[262825],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-881766","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-audio-acoustics","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2023-8-15","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/pdf\/2209.14275.pdf","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Soham Deshmukh","user_id":40312,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Soham Deshmukh"},{"type":"edited_text","value":"Benjamin Elizalde","user_id":41662,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Benjamin Elizalde"},{"type":"text","value":"Huaming Wang","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[848806],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":848806,"post_title":"Project CLAP","post_name":"project-clap","post_type":"msr-project","post_date":"2022-06-01 08:34:51","post_modified":"2022-08-05 13:30:54","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/project-clap\/","post_excerpt":"Advancing the state-of-the-art audio technologies with AI Project CLAP aims to advance the state-of-the-art audio technologies and develop the next generation framework for understanding acoustic cues. The human auditory system can hear sounds and extract the kind of decisions or meanings we need to interact with our surroundings. We can listen to an acoustic scene say domestic household and identify if someone is washing dishes, people talking, and the different appliances running, and make inferences…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/848806"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/881766"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/881766\/revisions"}],"predecessor-version":[{"id":1035258,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/881766\/revisions\/1035258"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=881766"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=881766"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=881766"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=881766"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=881766"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=881766"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=881766"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=881766"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=881766"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=881766"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=881766"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=881766"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=881766"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=881766"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=881766"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=881766"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}