{"id":887280,"date":"2022-10-16T20:54:09","date_gmt":"2022-10-17T03:54:09","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/"},"modified":"2022-10-18T22:02:13","modified_gmt":"2022-10-19T05:02:13","slug":"a-simple-approach-to-learning-unsupervised-multilingual-embeddings","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/a-simple-approach-to-learning-unsupervised-multilingual-embeddings\/","title":{"rendered":"A Simple Approach to Learning Unsupervised Multilingual Embeddings"},"content":{"rendered":"
Recent progress on unsupervised cross-lingual embeddings in the bilingual setting has given the impetus to learning a shared embedding space for several languages. A popular framework to solve the latter problem is to solve the following two sub-problems jointly: 1) learning unsupervised word alignment between several language pairs, and 2) learning how to map the monolingual embeddings of every language to shared multilingual space. In contrast, we propose a simple approach by decoupling the above two sub-problems and solving them separately, one after another, using existing techniques. We show that this proposed approach obtains surprisingly good performance in tasks such as bilingual lexicon induction, cross-lingual word similarity, multilingual document classification, and multilingual dependency parsing. When distant languages are involved, the proposed approach shows robust behavior and outperforms existing unsupervised multilingual word embedding approaches.<\/p>\n","protected":false},"excerpt":{"rendered":"
Recent progress on unsupervised cross-lingual embeddings in the bilingual setting has given the impetus to learning a shared embedding space for several languages. A popular framework to solve the latter problem is to solve the following two sub-problems jointly: 1) learning unsupervised word alignment between several language pairs, and 2) learning how to map the […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246694,246691,266322,257428,249562,248833,246808,252490],"msr-conference":[260143],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-887280","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us","msr-field-of-study-artificial-intelligence","msr-field-of-study-computer-science","msr-field-of-study-decoupling-probability","msr-field-of-study-dependency-grammar","msr-field-of-study-document-classification","msr-field-of-study-embedding","msr-field-of-study-natural-language-processing","msr-field-of-study-word-embedding"],"msr_publishername":"Association for Computational Linguistics","msr_edition":"","msr_affiliation":"","msr_published_date":"2020-11-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"10.18653\/V1\/2020.EMNLP-MAIN.240","label_id":"243106","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/aclanthology.org\/2020.emnlp-main.240\/","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2004.05991","label_id":"252679","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/dblp.uni-trier.de\/db\/conf\/emnlp\/emnlp2020-1.html#JawanpuriaMM20","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/ui.adsabs.harvard.edu\/abs\/2020arXiv200405991J\/abstract","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/virtual.2020.emnlp.org\/paper_main.410.html","label_id":"243109","label":0},{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.aclweb.org\/anthology\/2020.emnlp-main.240.pdf","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Pratik Jawanpuria","user_id":39348,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Pratik Jawanpuria"},{"type":"edited_text","value":"Mayank Meghwanshi","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Bamdev Mishra","user_id":39006,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Bamdev Mishra"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[773560],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/887280"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/887280\/revisions"}],"predecessor-version":[{"id":887292,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/887280\/revisions\/887292"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=887280"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=887280"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=887280"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=887280"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=887280"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=887280"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=887280"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=887280"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=887280"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=887280"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=887280"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=887280"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=887280"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=887280"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=887280"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=887280"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}