{"id":891846,"date":"2022-10-24T13:11:01","date_gmt":"2022-10-24T20:11:01","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/"},"modified":"2022-10-24T13:11:01","modified_gmt":"2022-10-24T20:11:01","slug":"dew-transparent-constant-sized-zksnarks","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/dew-transparent-constant-sized-zksnarks\/","title":{"rendered":"Dew: Transparent Constant-sized zkSNARKs"},"content":{"rendered":"
We construct polynomial commitment schemes with constant sized evaluation proofs and logarithmic verification time in the transparent setting. To the best of our knowledge, this is the first result achieving this combination of properties. Our starting point is a transparent inner product commitment scheme with constant-sized proofs and linear verification. We build on this to construct a polynomial commitment scheme with constant size evaluation proofs and logarithmic (in the degree of the polynomial) verification time. Our constructions make use of groups of unknown order instantiated by class groups. We prove security of our construction in the Generic Group Model (GGM).<\/p>\n
Using our polynomial commitment scheme to compile an information-theoretic proof system yields Dew — a transparent and constant-sized zkSNARK (Zero-knowledge Succinct Non-interactive ARguments of Knowledge) with logarithmic verification.<\/p>\n
Finally, we show how to recover the result of DARK (B\u00fcnz et al., Eurocrypt 2020). DARK presented a succinct transparent polynomial commitment scheme with logarithmic proof size and verification. However, it was recently discovered to have a gap in its security proof (Block et al, CRYPTO 2021).<\/p>\n
We recover its extractability based on our polynomial commitment construction, thus obtaining a transparent polynomial commitment scheme with logarithmic proof size and verification under the same assumptions as DARK, but with a prover time that is quadratic.<\/p>\n
Note:<\/strong>\u00a0This revision uses the new Schwartz-Zippel for multilinear polynomials mod N (Benedikt B\u00fcnz and Ben Fisch, https:\/\/ia.cr\/2022\/458) to obtain better bounds on \\alpha, resulting in quasi-linear prover in the GGM construction.<\/p>\n","protected":false},"excerpt":{"rendered":" We construct polynomial commitment schemes with constant sized evaluation proofs and logarithmic verification time in the transparent setting. To the best of our knowledge, this is the first result achieving this combination of properties. Our starting point is a transparent inner product commitment scheme with constant-sized proofs and linear verification. We build on this to […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13558],"msr-publication-type":[193724],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-891846","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-security-privacy-cryptography","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2022-4-06","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":0,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/eprint.iacr.org\/2022\/419","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Arasu Arun","user_id":0,"rest_url":false},{"type":"text","value":"Chaya Ganesh","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Satya Lokam","user_id":33532,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Satya Lokam"},{"type":"text","value":"Tushar Mopuri","user_id":0,"rest_url":false},{"type":"text","value":"Sriram Sridhar","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[881565],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"miscellaneous","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/891846"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/891846\/revisions"}],"predecessor-version":[{"id":891852,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/891846\/revisions\/891852"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=891846"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=891846"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=891846"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=891846"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=891846"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=891846"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=891846"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=891846"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=891846"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=891846"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=891846"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=891846"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=891846"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=891846"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=891846"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=891846"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}