{"id":895287,"date":"2022-11-03T08:58:18","date_gmt":"2022-11-03T15:58:18","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/"},"modified":"2022-11-03T08:58:18","modified_gmt":"2022-11-03T15:58:18","slug":"online-algorithms-for-the-santa-claus-problem","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/online-algorithms-for-the-santa-claus-problem\/","title":{"rendered":"Online Algorithms for the Santa Claus Problem"},"content":{"rendered":"

The Santa Claus problem is a fundamental problem in fair division: the goal is to partition a set of heterogeneous items among heterogeneous agents so as to maximize the minimum value of items received by any agent. In this paper, we study the online version of this problem where the items are not known in advance and have to be assigned to agents as they arrive over time. If the arrival order of items is arbitrary, then no good assignment rule exists in the worst case. However, we show that, if the arrival order is random, then for\u00a0n<\/span><\/span><\/span><\/span>\u00a0agents and any\u00a0\u03b5<\/span>><\/span>0<\/span><\/span><\/span><\/span>, we can obtain a competitive ratio of\u00a01<\/span>\u2212<\/span>\u03b5<\/span><\/span><\/span><\/span>\u00a0when the optimal assignment gives value at least\u00a0\u03a9<\/span>(<\/span>log<\/span><\/span>n<\/span>\/<\/span><\/span><\/span>\u03b5<\/span>2<\/span><\/span>)<\/span><\/span><\/span><\/span>\u00a0to every agent (assuming each item has at most unit value). We also show that this result is almost tight: namely, if the optimal solution has value at most\u00a0C<\/span>ln<\/span><\/span>n<\/span>\/<\/span><\/span><\/span>\u03b5<\/span><\/span><\/span><\/span>\u00a0for some constant\u00a0C<\/span><\/span><\/span><\/span>, then there is no\u00a0(<\/span>1<\/span>\u2212<\/span>\u03b5<\/span>)<\/span><\/span><\/span><\/span>-competitive algorithm even for random arrival order.<\/p>\n","protected":false},"excerpt":{"rendered":"

The Santa Claus problem is a fundamental problem in fair division: the goal is to partition a set of heterogeneous items among heterogeneous agents so as to maximize the minimum value of items received by any agent. In this paper, we study the online version of this problem where the items are not known in […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[266463,266466],"msr-conference":[259048],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-895287","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-artificial-intelligence","msr-locale-en_us","msr-field-of-study-computer-science-and-game-theory","msr-field-of-study-data-structures-and-algorithms"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2022-10-13","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2210.07333","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"MohammadTaghi Hajiaghayi","user_id":0,"rest_url":false},{"type":"text","value":"MohammadReza Khani","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Debmalya Panigrahi","user_id":31610,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Debmalya Panigrahi"},{"type":"text","value":"Max Springer","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[873195],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/895287"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/895287\/revisions"}],"predecessor-version":[{"id":895293,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/895287\/revisions\/895293"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=895287"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=895287"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=895287"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=895287"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=895287"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=895287"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=895287"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=895287"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=895287"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=895287"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=895287"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=895287"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=895287"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=895287"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=895287"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=895287"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}