{"id":896676,"date":"2022-11-08T06:05:29","date_gmt":"2022-11-08T14:05:29","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/"},"modified":"2023-10-25T11:16:00","modified_gmt":"2023-10-25T18:16:00","slug":"exploring-collection-of-sign-language-videos-through-crowdsourcing","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/exploring-collection-of-sign-language-videos-through-crowdsourcing\/","title":{"rendered":"Exploring Collection of Sign Language Videos through Crowdsourcing"},"content":{"rendered":"

Inadequate sign language data currently impedes advancement of sign language ML and AI. Training on existing datasets results in limited models due to small size, and lack of diverse signers in real-world settings. Complex labeling problems in particular often limit scale. In this work, we explore the potential for crowdsourcing to help overcome these barriers. To do this, we ran a user study with exploratory crowdsourcing tasks designed to support scalability: 1) to record videos of specific content \u2013 thereby enabling automatic, scalable labeling<\/em> \u2013 and 2) to perform quality control checks for execution consistency \u2013 further reducing post-processing requirements<\/em>. We also provided workers with a searchable view of the crowdsourced dataset, to boost engagement and transparency and align with Deaf community values. Our user study included 29 participants using our exploratory tasks to record 1906 videos and perform 2331 quality control checks. Our results suggest that a crowd of signers may be able to generate high-quality recordings and perform reliable quality control, and that the signing community values visibility into the resulting dataset.<\/p>\n","protected":false},"excerpt":{"rendered":"

Inadequate sign language data currently impedes advancement of sign language ML and AI. Training on existing datasets results in limited models due to small size, and lack of diverse signers in real-world settings. Complex labeling problems in particular often limit scale. In this work, we explore the potential for crowdsourcing to help overcome these barriers. […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[246574],"research-area":[13556,13545,13554],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[249802,249640,252901,248485,246805],"msr-conference":[262639],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-896676","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-highlight-award","msr-research-area-artificial-intelligence","msr-research-area-human-language-technologies","msr-research-area-human-computer-interaction","msr-locale-en_us","msr-field-of-study-accessibility","msr-field-of-study-computer-supported-cooperative-work","msr-field-of-study-crowdsourcing","msr-field-of-study-human-computer-interaction","msr-field-of-study-natural-language"],"msr_publishername":"ACM","msr_edition":"","msr_affiliation":"","msr_published_date":"2022-11-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"Impact Award","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2022\/11\/Exploring_Collection_of_Sign_Language_Videos_through_Crowdsourcing.pdf","id":"896679","title":"exploring_collection_of_sign_language_videos_through_crowdsourcing","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":896679,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2022\/11\/Exploring_Collection_of_Sign_Language_Videos_through_Crowdsourcing.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Danielle Bragg","user_id":37592,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Danielle Bragg"},{"type":"text","value":"Abraham Glasser","user_id":0,"rest_url":false},{"type":"text","value":"Fyodor Minakov","user_id":0,"rest_url":false},{"type":"text","value":"Naomi Caselli","user_id":0,"rest_url":false},{"type":"text","value":"William Thies","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199563],"msr_event":[],"msr_group":[],"msr_project":[614286],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":614286,"post_title":"Data-Driven Accessibility Systems","post_name":"data-driven-accessibility-systems","post_type":"msr-project","post_date":"2019-10-28 09:08:40","post_modified":"2023-11-14 18:22:49","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/data-driven-accessibility-systems\/","post_excerpt":"Microsoft Research New England aims to build the accessibility systems of the future. In particular, we are focused on building systems to better support sign language users and low-vision readers. Accessibility is a major concern for many people with disabilities. Over a billion people worldwide (and nearly one in five in the U.S.1) live with some form of disability. Despite this large group, which is growing as the world\u2019s population ages, many technical systems are…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/614286"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/896676"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/896676\/revisions"}],"predecessor-version":[{"id":896685,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/896676\/revisions\/896685"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=896676"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=896676"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=896676"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=896676"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=896676"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=896676"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=896676"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=896676"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=896676"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=896676"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=896676"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=896676"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=896676"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=896676"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=896676"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=896676"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}