{"id":897795,"date":"2022-11-14T00:25:38","date_gmt":"2022-11-14T08:25:38","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/"},"modified":"2022-11-14T10:20:53","modified_gmt":"2022-11-14T18:20:53","slug":"streaming-speaker-attributed-asr-with-token-level-speaker-embeddings","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/streaming-speaker-attributed-asr-with-token-level-speaker-embeddings\/","title":{"rendered":"Streaming Speaker-Attributed ASR with Token-Level Speaker Embeddings"},"content":{"rendered":"

This paper presents a streaming speaker-attributed automatic speech recognition (SA-ASR) model that can recognize “who spoke what” with low latency even when multiple people are speaking simultaneously. Our model is based on token-level serialized output training (t-SOT) which was recently proposed to transcribe multi-talker speech in a streaming fashion. To further recognize speaker identities, we propose an encoder-decoder based speaker embedding extractor that can estimate a speaker representation for each recognized token not only from non-overlapping speech but also from overlapping speech. The proposed speaker embedding, named t-vector, is extracted synchronously with the t-SOT ASR model, enabling joint execution of speaker identification (SID) or speaker diarization (SD) with the multi-talker transcription with low latency. We evaluate the proposed model for a joint task of ASR and SID\/SD by using LibriSpeechMix and LibriCSS corpora. The proposed model achieves substantially better accuracy than a prior streaming model and shows comparable or sometimes even superior results to the state-of-the-art offline SA-ASR model.<\/p>\n","protected":false},"excerpt":{"rendered":"

This paper presents a streaming speaker-attributed automatic speech recognition (SA-ASR) model that can recognize “who spoke what” with low latency even when multiple people are speaking simultaneously. Our model is based on token-level serialized output training (t-SOT) which was recently proposed to transcribe multi-talker speech in a streaming fashion. To further recognize speaker identities, we […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,243062,13545],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-897795","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-audio-acoustics","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2022-9-18","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/www.isca-speech.org\/archive\/pdfs\/interspeech_2022\/kanda22b_interspeech.pdf","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Naoyuki Kanda","user_id":38661,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Naoyuki Kanda"},{"type":"text","value":"Jian Wu","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Yu Wu","user_id":39742,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yu Wu"},{"type":"text","value":"Xiong Xiao","user_id":0,"rest_url":false},{"type":"text","value":"Zhong Meng","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Xiaofei Wang","user_id":38658,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Xiaofei Wang"},{"type":"text","value":"Yashesh Gaur","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Zhuo Chen","user_id":38589,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Zhuo Chen"},{"type":"user_nicename","value":"Jinyu Li","user_id":32312,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Jinyu Li"},{"type":"user_nicename","value":"Takuya Yoshioka","user_id":36278,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Takuya Yoshioka"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[664548,783091],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/897795"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/897795\/revisions"}],"predecessor-version":[{"id":897798,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/897795\/revisions\/897798"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=897795"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=897795"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=897795"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=897795"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=897795"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=897795"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=897795"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=897795"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=897795"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=897795"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=897795"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=897795"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=897795"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=897795"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=897795"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=897795"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}